Computing the homology of Koszul complexes
HTML articles powered by AMS MathViewer
- by Bernhard Köck
- Trans. Amer. Math. Soc. 353 (2001), 3115-3147
- DOI: https://doi.org/10.1090/S0002-9947-01-02723-4
- Published electronically: April 10, 2001
- PDF | Request permission
Abstract:
Let $R$ be a commutative ring and $I$ an ideal in $R$ which is locally generated by a regular sequence of length $d$. Then, each f. g. projective $R/I$-module $V$ has an $R$-projective resolution $P.$ of length $d$. In this paper, we compute the homology of the $n$-th Koszul complex associated with the homomorphism $P_1 \rightarrow P_0$ for all $n \ge 1$, if $d=1$. This computation yields a new proof of the classical Adams-Riemann-Roch formula for regular closed immersions which does not use the deformation to the normal cone any longer. Furthermore, if $d=2$, we compute the homology of the complex $N \operatorname {Sym}^2 \Gamma (P.)$ where $\Gamma$ and $N$ denote the functors occurring in the Dold-Kan correspondence.References
- Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), no. 3, 207–278. MR 658729, DOI 10.1016/0001-8708(82)90039-1
- M. F. Atiyah and D. O. Tall, Group representations, $\lambda$-rings and the $J$-homomorphism, Topology 8 (1969), 253–297. MR 244387, DOI 10.1016/0040-9383(69)90015-9
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- Albrecht Dold and Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312 (German, with French summary). MR 150183
- Samuel Eilenberg, Abstract description of some basic functors, J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961). MR 125148
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- William Fulton and Serge Lang, Riemann-Roch algebra, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 277, Springer-Verlag, New York, 1985. MR 801033, DOI 10.1007/978-1-4757-1858-4
- Daniel R. Grayson, Adams operations on higher $K$-theory, $K$-Theory 6 (1992), no. 2, 97–111. MR 1187703, DOI 10.1007/BF01771009
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
- Brenda Johnson and Randy McCarthy, Linearization, Dold-Puppe stabilization, and Mac Lane’s $Q$-construction, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1555–1593. MR 1451606, DOI 10.1090/S0002-9947-98-02067-4
- J. P. Jouanolou, Riemann-Roch sans dénominateurs, Invent. Math. 11 (1970), 15–26. MR 332789, DOI 10.1007/BF01389802
- Bernhard Köck, The Grothendieck-Riemann-Roch theorem for group scheme actions, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 3, 415–458 (English, with English and French summaries). MR 1621405, DOI 10.1016/S0012-9593(98)80140-7
- —, Riemann-Roch for tensor powers, Math. Z. 233 (2000), 755–801.
- Ju. I. Manin, Lectures on the $K$-functor in algebraic geometry, Uspehi Mat. Nauk 24 (1969), no. 5 (149), 3–86 (Russian). MR 0265355
- Christophe Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488–550 (French). MR 787114, DOI 10.4153/CJM-1985-029-x
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Charles E. Watts, Intrinsic characterizations of some additive functors, Proc. Amer. Math. Soc. 11 (1960), 5–8. MR 118757, DOI 10.1090/S0002-9939-1960-0118757-0
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Bibliographic Information
- Bernhard Köck
- Affiliation: Mathematisches Institut II, Universität Karlsruhe, 76128 Karlsruhe, Germany
- Address at time of publication: Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Email: Bernhard.Koeck@math.uni-karlsruhe.de
- Received by editor(s): May 30, 1999
- Received by editor(s) in revised form: January 30, 2000
- Published electronically: April 10, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3115-3147
- MSC (2000): Primary 13D25, 19E20, 14C40, 13D15
- DOI: https://doi.org/10.1090/S0002-9947-01-02723-4
- MathSciNet review: 1828601