## Construction and asymptotic stability of structurally stable internal layer solutions

HTML articles powered by AMS MathViewer

- by Xiao-Biao Lin PDF
- Trans. Amer. Math. Soc.
**353**(2001), 2983-3043 Request permission

## Abstract:

We introduce a geometric/asymptotic method to treat structurally stable internal layer solutions. We consider asymptotic expansions of the internal layer solutions and the critical eigenvalues that determine their stability. Proofs of the existence of exact solutions and eigenvalue-eigenfunctions are outlined.

Multi-layered solutions are constructed by a new shooting method through a sequence of **pseudo Poincaré mappings** that do not require the transversality of the flow to cross sections. The critical eigenvalues are determined by a **coupling matrix** that generates the SLEP matrix. The transversality of the shooting method is related to the nonzeroness of the critical eigenvalues.

An equivalent approach is given to mono-layer solutions. They can be determined by the intersection of a **fast jump surface** and a **slow switching curve**, which reduces Fenichel’s transversality condition to the slow manifold. The critical eigenvalue is determined by the angle of the intersection.

We present three examples. The first treats the critical eigenvalues of the system studied by Angenent, Mallet-Paret & Peletier. The second shows that a key lemma in the SLEP method may not hold. The third is a perturbed activator-inhibitor system that can have any number of mono-layer solutions. Some of the solutions can only be found with the new shooting method.

## References

- S. B. Angenent, J. Mallet-Paret, and L. A. Peletier,
*Stable transition layers in a semilinear boundary value problem*, J. Differential Equations**67**(1987), no. 2, 212–242. MR**879694**, DOI 10.1016/0022-0396(87)90147-1 - P. W. Bates, P. C. Fife, R. A. Gardner, and C. K. R. T. Jones,
*The existence of travelling wave solutions of a generalized phase-field model*, SIAM J. Math. Anal.**28**(1997), no. 1, 60–93. MR**1427728**, DOI 10.1137/S0036141095283820 - Flaviano Battelli,
*Heteroclinic orbits in singular systems: a unifying approach*, J. Dynam. Differential Equations**6**(1994), no. 1, 147–173. MR**1262726**, DOI 10.1007/BF02219191 - Amitabha Bose,
*Symmetric and antisymmetric pulses in parallel coupled nerve fibres*, SIAM J. Appl. Math.**55**(1995), no. 6, 1650–1674. MR**1358794**, DOI 10.1137/S0036139994262398 - J. Carr and R. L. Pego,
*Metastable patterns in solutions of $u_t=\epsilon ^2u_{xx}-f(u)$*, Comm. Pure Appl. Math.**42**(1989), no. 5, 523–576. MR**997567**, DOI 10.1002/cpa.3160420502 - Shui Nee Chow, Jack K. Hale, and John Mallet-Paret,
*An example of bifurcation to homoclinic orbits*, J. Differential Equations**37**(1980), no. 3, 351–373. MR**589997**, DOI 10.1016/0022-0396(80)90104-7 - W. A. Coppel,
*Dichotomies in stability theory*, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR**0481196** - A. Doelman and V. Rottschäfer,
*Singularly perturbed and nonlocal modulation equations for systems with interacting instability mechanisms*, J. Nonlinear Sci.**7**(1997), no. 4, 371–409. MR**1456886**, DOI 10.1007/s003329900034 - Neil Fenichel,
*Persistence and smoothness of invariant manifolds for flows*, Indiana Univ. Math. J.**21**(1971/72), 193–226. MR**287106**, DOI 10.1512/iumj.1971.21.21017 - Neil Fenichel,
*Geometric singular perturbation theory for ordinary differential equations*, J. Differential Equations**31**(1979), no. 1, 53–98. MR**524817**, DOI 10.1016/0022-0396(79)90152-9 - Paul C. Fife,
*Transition layers in singular perturbation problems*, J. Differential Equations**15**(1974), 77–105. MR**330665**, DOI 10.1016/0022-0396(74)90088-6 - Paul C. Fife,
*Boundary and interior transition layer phenomena for pairs of second-order differential equations*, J. Math. Anal. Appl.**54**(1976), no. 2, 497–521. MR**419961**, DOI 10.1016/0022-247X(76)90218-3 - Paul C. Fife and Ling Hsiao,
*The generation and propagation of internal layers*, Nonlinear Anal.**12**(1988), no. 1, 19–41. MR**924750**, DOI 10.1016/0362-546X(88)90010-7 - Masayasu Mimura and Takaaki Nishida (eds.),
*Recent topics in nonlinear PDE*, North-Holland Mathematics Studies, vol. 98, North-Holland Publishing Co., Amsterdam; North-Holland Publishing Co., Amsterdam, 1984. Papers from a meeting on nonlinear partial differential equations held at Hiroshima University, Hiroshima, February 1983; Lecture Notes in Numerical and Applied Analysis, 6. MR**839265** - G. Fusco and J. K. Hale,
*Slow-motion manifolds, dormant instability, and singular perturbations*, J. Dynam. Differential Equations**1**(1989), no. 1, 75–94. MR**1010961**, DOI 10.1007/BF01048791 - John Guckenheimer,
*Bifurcations of dynamical systems*, Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978) Progr. Math., vol. 8, Birkhäuser, Boston, Mass., 1980, pp. 115–231. MR**589591** - Michael Hayes, Tasso J. Kaper, Nancy Kopell, and Kinya Ono,
*On the application of geometric singular perturbation theory to some classical two-point boundary value problems*, Internat. J. Bifur. Chaos Appl. Sci. Engrg.**8**(1998), no. 2, 189–209. MR**1633704**, DOI 10.1142/S0218127498000140 - Jack K. Hale and Xiao-Biao Lin,
*Multiple internal layer solutions generated by spatially oscillatory perturbations*, J. Differential Equations**154**(1999), no. 2, 364–418. MR**1691077**, DOI 10.1006/jdeq.1998.3566 - Jack K. Hale and Kunimochi Sakamoto,
*Existence and stability of transition layers*, Japan J. Appl. Math.**5**(1988), no. 3, 367–405. MR**965871**, DOI 10.1007/BF03167908 - E. J. Hinch,
*Perturbation methods*, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1991. MR**1138727**, DOI 10.1017/CBO9781139172189 - Frank Charles Hoppensteadt,
*Singular perturbations on the infinite interval*, Trans. Amer. Math. Soc.**123**(1966), 521–535. MR**194693**, DOI 10.1090/S0002-9947-1966-0194693-9 - Frank Hoppensteadt,
*Properties of solutions of ordinary differential equations with small parameters*, Comm. Pure Appl. Math.**24**(1971), 807–840. MR**288378**, DOI 10.1002/cpa.3160240607 - Yuzo Hosono and Masayasu Mimura,
*Singular perturbation approach to traveling waves in competing and diffusing species models*, J. Math. Kyoto Univ.**22**(1982/83), no. 3, 435–461. MR**674603**, DOI 10.1215/kjm/1250521729 - Christopher K. R. T. Jones,
*Geometric singular perturbation theory*, Dynamical systems (Montecatini Terme, 1994) Lecture Notes in Math., vol. 1609, Springer, Berlin, 1995, pp. 44–118. MR**1374108**, DOI 10.1007/BFb0095239 - C. K. R. T. Jones and N. Kopell,
*Tracking invariant manifolds with differential forms in singularly perturbed systems*, J. Differential Equations**108**(1994), no. 1, 64–88. MR**1268351**, DOI 10.1006/jdeq.1994.1025 - Christopher K. R. T. Jones and Jonathan E. Rubin,
*Existence of standing pulse solutions to an inhomogeneous reaction-diffusion system*, J. Dynam. Differential Equations**10**(1998), no. 1, 1–35. MR**1607532**, DOI 10.1023/A:1022651311294 - C. K. R. T. Jones, Tasso J. Kaper, and Nancy Kopell,
*Tracking invariant manifolds up to exponentially small errors*, SIAM J. Math. Anal.**27**(1996), no. 2, 558–577. MR**1377489**, DOI 10.1137/S003614109325966X - Hiroshi Kokubu, Yasumasa Nishiura, and Hiroe Oka,
*Heteroclinic and homoclinic bifurcations in bistable reaction diffusion systems*, J. Differential Equations**86**(1990), no. 2, 260–341. MR**1064014**, DOI 10.1016/0022-0396(90)90033-L - Xiao-Biao Lin,
*Shadowing lemma and singularly perturbed boundary value problems*, SIAM J. Appl. Math.**49**(1989), no. 1, 26–54. MR**978824**, DOI 10.1137/0149002 - Xiao-Biao Lin,
*Heteroclinic bifurcation and singularly perturbed boundary value problems*, J. Differential Equations**84**(1990), no. 2, 319–382. MR**1047573**, DOI 10.1016/0022-0396(90)90082-Z - Xiao-Biao Lin,
*Using Mel′nikov’s method to solve Šilnikov’s problems*, Proc. Roy. Soc. Edinburgh Sect. A**116**(1990), no. 3-4, 295–325. MR**1084736**, DOI 10.1017/S0308210500031528 - Xiao-Biao Lin,
*Local and global existence of multiple waves near formal approximations*, Nonlinear dynamical systems and chaos (Groningen, 1995) Progr. Nonlinear Differential Equations Appl., vol. 19, Birkhäuser, Basel, 1996, pp. 385–404. MR**1391506** - Xiao-Biao Lin,
*Asymptotic expansion for layer solutions of a singularly perturbed reaction-diffusion system*, Trans. Amer. Math. Soc.**348**(1996), no. 2, 713–753. MR**1333395**, DOI 10.1090/S0002-9947-96-01542-5 - Xiao-Biao Lin,
*Shadowing matching errors for wave-front-like solutions*, J. Differential Equations**129**(1996), no. 2, 403–457. MR**1404389**, DOI 10.1006/jdeq.1996.0123 - H. Meinhardt, Models of biological pattern formation. Academic Press, 1982.
- Masayasu Mimura, Masahisa Tabata, and Yuzo Hosono,
*Multiple solutions of two-point boundary value problems of Neumann type with a small parameter*, SIAM J. Math. Anal.**11**(1980), no. 4, 613–631. MR**579554**, DOI 10.1137/0511057 - J. D. Murray,
*Mathematical biology*, Biomathematics, vol. 19, Springer-Verlag, Berlin, 1989. MR**1007836**, DOI 10.1007/978-3-662-08539-4 - Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, Dynamics Reported, New Series,
**3**, (1994), 25-103, - Yasumasa Nishiura and Hiroshi Fujii,
*Stability of singularly perturbed solutions to systems of reaction-diffusion equations*, SIAM J. Math. Anal.**18**(1987), no. 6, 1726–1770. Translated in J. Soviet Math. 45 (1989), no. 3, 1205–1218. MR**911661**, DOI 10.1137/0518124 - Yasumasa Nishiura and Hiroshi Fujii,
*SLEP method to the stability of singularly perturbed solutions with multiple internal transition layers in reaction-diffusion systems*, Dynamics of infinite-dimensional systems (Lisbon, 1986) NATO Adv. Sci. Inst. Ser. F: Comput. Systems Sci., vol. 37, Springer, Berlin, 1987, pp. 211–230. MR**921913** - Robert E. O’Malley Jr.,
*Singular perturbation methods for ordinary differential equations*, Applied Mathematical Sciences, vol. 89, Springer-Verlag, New York, 1991. MR**1123483**, DOI 10.1007/978-1-4612-0977-5 - Kenneth J. Palmer,
*Exponential dichotomies, the shadowing lemma and transversal homoclinic points*, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 265–306. MR**945967** - Kenneth J. Palmer,
*Transversal heteroclinic points and Cherry’s example of a nonintegrable Hamiltonian system*, J. Differential Equations**65**(1986), no. 3, 321–360. MR**865066**, DOI 10.1016/0022-0396(86)90023-9 - Robert J. Sacker,
*The splitting index for linear differential systems*, J. Differential Equations**33**(1979), no. 3, 368–405. MR**543706**, DOI 10.1016/0022-0396(79)90072-X - J. L. Walsh,
*On interpolation by functions analytic and bounded in a given region*, Trans. Amer. Math. Soc.**46**(1939), 46–65. MR**55**, DOI 10.1090/S0002-9947-1939-0000055-0 - Kunimochi Sakamoto,
*Construction and stability analysis of transition layer solutions in reaction-diffusion systems*, Tohoku Math. J. (2)**42**(1990), no. 1, 17–44. MR**1036472**, DOI 10.2748/tmj/1178227692 - P. Szmolyan,
*Transversal heteroclinic and homoclinic orbits in singular perturbation problems*, J. Differential Equations**92**(1991), no. 2, 252–281. MR**1120905**, DOI 10.1016/0022-0396(91)90049-F - S.-K. Tin, N. Kopell, and C. K. R. T. Jones,
*Invariant manifolds and singularly perturbed boundary value problems*, SIAM J. Numer. Anal.**31**(1994), no. 6, 1558–1576. MR**1302675**, DOI 10.1137/0731081 - Stephen Wiggins,
*Global bifurcations and chaos*, Applied Mathematical Sciences, vol. 73, Springer-Verlag, New York, 1988. Analytical methods. MR**956468**, DOI 10.1007/978-1-4612-1042-9

## Additional Information

**Xiao-Biao Lin**- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205
- Email: xblin@xblsun.math.ncsu.edu
- Received by editor(s): March 18, 1998
- Received by editor(s) in revised form: May 5, 2000
- Published electronically: March 22, 2001
- Additional Notes: Research partially supported by NSF grant 9501255
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 2983-3043 - MSC (2000): Primary 34D15, 34E05, 35B25; Secondary 35C20, 37C29, 34C37
- DOI: https://doi.org/10.1090/S0002-9947-01-02769-6
- MathSciNet review: 1828598