Sums of $k$ unit fractions
HTML articles powered by AMS MathViewer
- by Christian Elsholtz
- Trans. Amer. Math. Soc. 353 (2001), 3209-3227
- DOI: https://doi.org/10.1090/S0002-9947-01-02782-9
- Published electronically: April 12, 2001
- PDF | Request permission
Abstract:
Erdős and Straus conjectured that for any positive integer $n\geq 2$ the equation $\frac {4}{n}= \frac {1}{x} + \frac {1}{y} + \frac {1}{z}$ has a solution in positive integers $x, y$, and $z$. Let $m > k \geq 3$ and \[ E_{m,k}(N)= \mid \{ n \leq N \mid \frac {m}{n} = \frac {1}{t_1} + \ldots + \frac {1}{t_k} \text { has no solution with }t_i \in \mathbb {N} \} \mid . \] We show that parametric solutions can be used to find upper bounds on $E_{m,k}(N)$ where the number of parameters increases exponentially with $k$. This enables us to prove \[ E_{m,k}(N) \ll N \exp \left ( -c_{m,k} (\log N)^{1-\frac {1}{2^{k-1}-1}} \right ) \text { with } c_{m,k}>0. \] This improves upon earlier work by Viola (1973) and Shen (1986), and is an “exponential generalization” of the work of Vaughan (1970), who considered the case $k=3$.References
- M. H. Ahmadi and M. N. Bleicher, On the conjectures of Erdős and Straus, and Sierpiński on Egyptian fractions, Int. J. Math. Stat. Sci. 7 (1998), no. 2, 169–185. MR 1666363
- E.S. Croot. Unit Fractions. PhD thesis, University of Georgia, Athens, 2000. The thesis is based on three papers: 1) On some questions of Erdős and Graham about Egyptian fractions, to appear in Mathematika, 2) On unit fractions with denominators in short intervals, to appear in Acta Arithmetica, 3) On a coloring conjecture about unit fractions.
- R. Dedekind. Über Zerlegungen von Zahlen durch ihren größten gemeinsamen Teiler, (Festschrift der Universität Braunschweig, 1897) in Gesammelte mathematische Werke, Band 2. Braunschweig: Friedr. Vieweg & Sohn A.-G., 1931.
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- C. Elsholtz. The Erdős-Straus conjecture on $\frac {4}{n}=\frac {1}{x}+\frac {1}{y}+\frac {1}{z}$. Diploma thesis, Technische Universität Darmstadt, 1996.
- C. Elsholtz. Sums of $k$ Unit Fractions. PhD thesis, Technische Universität Darmstadt, 1998.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- R. L. Graham, On finite sums of unit fractions, Proc. London Math. Soc. (3) 14 (1964), 193–207. MR 160757, DOI 10.1112/plms/s3-14.2.193
- Richard K. Guy, Unsolved problems in number theory, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994. Unsolved Problems in Intuitive Mathematics, I. MR 1299330, DOI 10.1007/978-1-4899-3585-4
- Anatolij A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993. Translated from the second (1983) Russian edition and with a preface by Melvyn B. Nathanson. MR 1215269, DOI 10.1007/978-3-642-58018-5
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- G. Martin. Denser Egyptian fractions. Acta Arith. 95:231–260, 2000.
- Greg Martin, Dense Egyptian fractions, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3641–3657. MR 1608486, DOI 10.1090/S0002-9947-99-02327-2
- Hugh L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), no. 4, 547–567. MR 466048, DOI 10.1090/S0002-9904-1978-14497-8
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 0249355
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Władysław Narkiewicz, Classical problems in number theory, Monografie Matematyczne [Mathematical Monographs], vol. 62, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1986. MR 961960
- J. W. Sander, On $4/n=1/x+1/y+1/z$ and Rosser’s sieve, Acta Arith. 59 (1991), no. 2, 183–204. MR 1133958, DOI 10.4064/aa-59-2-183-204
- J. W. Sander, On $4/n=1/x+1/y+1/z$ and Iwaniec’ half-dimensional sieve, J. Number Theory 46 (1994), no. 2, 123–136. MR 1269248, DOI 10.1006/jnth.1994.1008
- J. W. Sander, Egyptian fractions and the Erdős-Straus conjecture, Nieuw Arch. Wisk. (4) 15 (1997), no. 1-2, 43–50. MR 1470435
- A. Schinzel. Erdős’s work on finite sums of unit fractions. To appear in Paul Erdős and his Mathematics, Proceedings of the Erdős conference (Budapest 1999), (Editors: G. Hálasz, L. Lovász, M. Simonovits, V. Sós).
- A. Schinzel. On sums of three unit fractions with polynomial denominators. Funct. Approx. Comment. Math. 28:187–194, 2000.
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Wolfgang Schwarz, Einführung in Siebmethoden der analytischen Zahlentheorie, Bibliographisches Institut, Mannheim-Vienna-Zurich, 1974. MR 0409392
- Zun Shen, On the Diophantine equation $\sum ^k_{i=0}1/x_i=a/n$, Chinese Ann. Math. Ser. B 7 (1986), no. 2, 213–220. A Chinese summary appears in Chinese Ann. Math. Ser. A 7 (1986), no. 2, 239–240. MR 858599
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- E. Sós. Die diophantische Gleichung $\frac {1}{x}=\frac {1}{x_1} + \frac {1}{x_2} + \ldots + \frac {1}{x_n}$. Zeitschrift für mathematischen und naturwissenschaftlichen Unterricht, 36:97–102, 1905.
- E. Sós. Zwei diophantische Gleichungen. Zeitschrift für mathematischen und naturwissenschaftlichen Unterricht, 37:186–190, 1906.
- R. C. Vaughan, On a problem of Erdős, Straus and Schinzel, Mathematika 17 (1970), 193–198. MR 289409, DOI 10.1112/S0025579300002886
- R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory 5 (1973), 64–79. MR 342476, DOI 10.1016/0022-314X(73)90059-0
- C. Viola, On the diophantine equations $\Pi ^{k}_{0}x_{i}-\sum ^{k}_{0}\,x_{i}=n$ and $\sum ^{k}_{0}\,1/x_{i}=a/n$, Acta Arith. 22 (1972/73), 339–352. MR 321869, DOI 10.4064/aa-22-3-339-352
- William A. Webb, On $4/n=1/x+1/y+1/z$, Proc. Amer. Math. Soc. 25 (1970), 578–584. MR 256984, DOI 10.1090/S0002-9939-1970-0256984-9
- Xun Qian Yang, A note on $4/n=1/x+1/y+1/z$, Proc. Amer. Math. Soc. 85 (1982), no. 4, 496–498. MR 660589, DOI 10.1090/S0002-9939-1982-0660589-3
Bibliographic Information
- Christian Elsholtz
- Affiliation: Institut für Mathematik, Technische Universität Clausthal, Erzstrasse 1, D-38678 Clausthal-Zellerfeld, Germany
- Email: elsholtz@math.tu-clausthal.de
- Received by editor(s): May 23, 2000
- Received by editor(s) in revised form: August 28, 2000
- Published electronically: April 12, 2001
- Additional Notes: The research for this paper was supported by a Ph.D. grant from the German National Merit Foundation
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3209-3227
- MSC (2000): Primary 11D68; Secondary 11D72, 11N36
- DOI: https://doi.org/10.1090/S0002-9947-01-02782-9
- MathSciNet review: 1828604