## Theta lifting of holomorphic discrete series: The case of $U(n, n) \times U(p, q)$

HTML articles powered by AMS MathViewer

- by Kyo Nishiyama and Chen-bo Zhu PDF
- Trans. Amer. Math. Soc.
**353**(2001), 3327-3345 Request permission

## Abstract:

Let $( G, G’ ) = ( U( n, n ), U( p, q ) ) \; ( p + q \leq n )$ be a reductive dual pair in the stable range. We investigate theta lifts to $G$ of unitary characters and holomorphic discrete series representations of $G’$, in relation to the geometry of nilpotent orbits. We give explicit formulas for their $K$-type decompositions. In particular, for the theta lifts of unitary characters, or holomorphic discrete series with a scalar extreme $K’$-type, we show that the $K$ structure of the resulting representations of $G$ is almost identical to the $K_{\mathbb {C}}$-module structure of the regular function rings on the closure of the associated nilpotent $K_{\mathbb {C}}$-orbits in $\mathfrak {s}$, where $\mathfrak {g} = \mathfrak {k} \oplus \mathfrak {s}$ is a Cartan decomposition. As a consequence, their associated cycles are multiplicity free.## References

- J. Adams,
*$L$-functoriality for dual pairs*, Astérisque**171-172**(1989), 85–129. Orbites unipotentes et représentations, II. MR**1021501** - R. Howe,
*$\theta$-series and invariant theory*, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 275–285. MR**546602** - Roger Howe,
*Reciprocity laws in the theory of dual pairs*, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 159–175. MR**733812** - John W. Green,
*Harmonic functions in domains with multiple boundary points*, Amer. J. Math.**61**(1939), 609–632. MR**90**, DOI 10.2307/2371316 - Roger Howe,
*Transcending classical invariant theory*, J. Amer. Math. Soc.**2**(1989), no. 3, 535–552. MR**985172**, DOI 10.1090/S0894-0347-1989-0985172-6 - Jing-Song Huang and Jian-Shu Li,
*Unipotent representations attached to spherical nilpotent orbits*, Amer. J. Math.**121**(1999), no. 3, 497–517. MR**1738410** - M. Kashiwara and M. Vergne,
*On the Segal-Shale-Weil representations and harmonic polynomials*, Invent. Math.**44**(1978), no. 1, 1–47. MR**463359**, DOI 10.1007/BF01389900 - Bertram Kostant,
*Lie group representations on polynomial rings*, Amer. J. Math.**85**(1963), 327–404. MR**158024**, DOI 10.2307/2373130 - Stephen S. Kudla,
*Seesaw dual reductive pairs*, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 244–268. MR**763017** - Soo Teck Lee and Chen-Bo Zhu,
*Degenerate principal series and local theta correspondence*, Trans. Amer. Math. Soc.**350**(1998), no. 12, 5017–5046. MR**1443883**, DOI 10.1090/S0002-9947-98-02036-4 - Soo Teck Lee and Chen-Bo Zhu,
*Degenerate principal series and local theta correspondence. II*, Israel J. Math.**100**(1997), 29–59. MR**1469104**, DOI 10.1007/BF02773634 - Jian-Shu Li,
*Singular unitary representations of classical groups*, Invent. Math.**97**(1989), no. 2, 237–255. MR**1001840**, DOI 10.1007/BF01389041 - Jian-Shu Li,
*Theta lifting for unitary representations with nonzero cohomology*, Duke Math. J.**61**(1990), no. 3, 913–937. MR**1084465**, DOI 10.1215/S0012-7094-90-06135-6 - Kyo Nishiyama, Multiplicity-free actions and the geometry of nilpotent orbits, Math. Ann.
**318**(2000), 777–793. CMP2001:06 - Kyo Nishiyama, Theta lifting of two-step nilpotent orbits for the pair $O(p, q) \times Sp(2n, \mathbb {R})$. In
*Proceedings of the Symposium on “Infinite Dimensional Harmonic Analysis”*(Kyoto, September 1999), pp. 278–289. - Kyo Nishiyama, Hiroyuki Ochiai and Kenji Taniguchi, Bernstein degree and associated cycles of Harish-Chandra modules (Hermitian symmetric case), to appear in
*Astérisque*. - Tomasz Przebinda,
*Characters, dual pairs, and unipotent representations*, J. Funct. Anal.**98**(1991), no. 1, 59–96. MR**1111194**, DOI 10.1016/0022-1236(91)90091-I - Tomasz Przebinda,
*Characters, dual pairs, and unitary representations*, Duke Math. J.**69**(1993), no. 3, 547–592. MR**1208811**, DOI 10.1215/S0012-7094-93-06923-2 - W. Schmid and K. Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups.
*Ann. of Math.*(2)**151**(2000), 1071–1118. - Eng-Chye Tan and Chen-Bo Zhu,
*On certain distinguished unitary representations supported on null cones*, Amer. J. Math.**120**(1998), no. 5, 1059–1076. MR**1646054** - P. Trapa, Annihilators, associated varieties, and the theta correspondence, preprint, November 1999.
- David A. Vogan Jr.,
*Gel′fand-Kirillov dimension for Harish-Chandra modules*, Invent. Math.**48**(1978), no. 1, 75–98. MR**506503**, DOI 10.1007/BF01390063 - David A. Vogan Jr.,
*Associated varieties and unipotent representations*, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR**1168491** - H. Weyl, The classical groups, Princeton University Press, 1946.
- Chen-Bo Zhu and Jing-Song Huang,
*On certain small representations of indefinite orthogonal groups*, Represent. Theory**1**(1997), 190–206. MR**1457244**, DOI 10.1090/S1088-4165-97-00031-9

## Additional Information

**Kyo Nishiyama**- Affiliation: Faculty of Integrated Human Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- MR Author ID: 207972
- Email: kyo@math.h.kyoto-u.ac.jp
**Chen-bo Zhu**- Affiliation: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
- MR Author ID: 305157
- ORCID: 0000-0003-3819-1458
- Email: matzhucb@nus.edu.sg
- Received by editor(s): August 11, 2000
- Received by editor(s) in revised form: November 8, 2000
- Published electronically: April 9, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 3327-3345 - MSC (2000): Primary 22E46, 11F27
- DOI: https://doi.org/10.1090/S0002-9947-01-02830-6
- MathSciNet review: 1828608