Berezin transform on real bounded symmetric domains
HTML articles powered by AMS MathViewer
- by Genkai Zhang PDF
- Trans. Amer. Math. Soc. 353 (2001), 3769-3787 Request permission
Abstract:
Let $\mathbb D$ be a bounded symmetric domain in a complex vector space $V_{\mathbb C}$ with a real form $V$ and $D=\mathbb D\cap V=G/K$ be the real bounded symmetric domain in the real vector space $V$. We construct the Berezin kernel and consider the Berezin transform on the $L^2$-space on $D$. The corresponding representation of $G$ is then unitarily equivalent to the restriction to $G$ of a scalar holomorphic discrete series of holomorphic functions on $\mathbb D$ and is also called the canonical representation. We find the spectral symbol of the Berezin transform under the irreducible decomposition of the $L^2$-space.References
- Jonathan Arazy and Gen Kai Zhang, $L^q$-estimates of spherical functions and an invariant mean-value property, Integral Equations Operator Theory 23 (1995), no. 2, 123–144. MR 1351341, DOI 10.1007/BF01197533
- F. A. Berezin, General concept of quantization, Comm. Math. Phys. 40 (1975), 153–174. MR 411452
- Jacques Faraut and Adam Korányi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1446489
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Joachim Hilgert and Gestur Ólafsson, Causal symmetric spaces, Perspectives in Mathematics, vol. 18, Academic Press, Inc., San Diego, CA, 1997. Geometry and harmonic analysis. MR 1407033
- S. C. Hille, Canonical representations, Ph.D. thesis, Leiden University, 1999.
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936
- Bertram Kostant and Siddhartha Sahi, Jordan algebras and Capelli identities, Invent. Math. 112 (1993), no. 3, 657–664. MR 1218328, DOI 10.1007/BF01232451
- O. Loos, Bounded symmetric domains and Jordan pairs, University of California, Irvine, 1977.
- Yu. Neretin, Matrix analogs of the integral $B(\alpha , \rho -\alpha )$ and Plancherel formula for Berezin kernel representations, (1999), preprint, Math.RT/9905045.
- G. Ólafsson, Causal symmetric spaces, Mathematica Gottingensis 15 (1990).
- Gestur Ólafsson and Bent Ørsted, Generalizations of the Bargmann transform, Lie theory and its applications in physics (Clausthal, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 3–14. MR 1634480
- Bent Ørsted and Gen Kai Zhang, Weyl quantization and tensor products of Fock and Bergman spaces, Indiana Univ. Math. J. 43 (1994), no. 2, 551–583. MR 1291529, DOI 10.1512/iumj.1994.43.43023
- Bent Ørsted and Genkai Zhang, $L^2$-versions of the Howe correspondence. I, Math. Scand. 80 (1997), no. 1, 125–160. MR 1466908, DOI 10.7146/math.scand.a-12615
- Jaak Peetre, The Berezin transform and Ha-plitz operators, J. Operator Theory 24 (1990), no. 1, 165–186. MR 1086552
- Goro Shimura, Generalized Bessel functions on symmetric spaces, J. Reine Angew. Math. 509 (1999), 35–66. MR 1679166, DOI 10.1515/crll.1999.041
- A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), no. 3, 563–597. MR 1291245
- G. van Dijk and S. C. Hille, Canonical representations related to hyperbolic spaces, J. Funct. Anal. 147 (1997), no. 1, 109–139. MR 1453178, DOI 10.1006/jfan.1996.3057
- G. van Dijk and M. Pevzner, Berezin kernels and tube domains, J. Funct. Anal., to appear.
- A. M. Vershik, I.M. Gel’fand, and M.I. Graev, Representations of the group $SL(2, \mathbf R)$ where $\mathbf R$ is a ring of functions, Uspekhi Mat. Nauk 28 (1973), no. 5, 83–128.
- Genkai Zhang, Berezin transform on line bundles over bounded symmetric domains, J. Lie Theory 10 (2000), no. 1, 111–126. MR 1748086
Additional Information
- Genkai Zhang
- Affiliation: Department of Mathematics, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden
- Email: genkai@math.chalmers.se
- Received by editor(s): January 16, 2000
- Received by editor(s) in revised form: October 10, 2000
- Published electronically: May 4, 2001
- Additional Notes: Research supported by the Swedish Natural Sciences Research Council (NFR)
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3769-3787
- MSC (2000): Primary 22E46, 43A85, 32M15, 53C35
- DOI: https://doi.org/10.1090/S0002-9947-01-02832-X
- MathSciNet review: 1837258