## Conditional stability estimation for an inverse boundary problem with non-smooth boundary in $\mathcal {R}^3$

HTML articles powered by AMS MathViewer

- by J. Cheng, Y. C. Hon and M. Yamamoto PDF
- Trans. Amer. Math. Soc.
**353**(2001), 4123-4138 Request permission

## Abstract:

In this paper, we investigate an inverse problem of determining a shape of a part of the boundary of a bounded domain in $\mathcal R^3$ by a solution to a Cauchy problem of the Laplace equation. Assuming that the unknown part is a Lipschitz continuous surface, we give a logarithmic conditional stability estimate in determining the part of boundary under reasonably a priori information of an unknown part. The keys are the complex extension and estimates for a harmonic measure.## References

- Giovanni Alessandrini,
*Stable determination of a crack from boundary measurements*, Proc. Roy. Soc. Edinburgh Sect. A**123**(1993), no. 3, 497–516. MR**1226614**, DOI 10.1017/S0308210500025853 - Stéphane Andrieux, Amel Ben Abda, and Mohamed Jaoua,
*Identifiabilité de frontière inaccessible par des mesures de surface*, C. R. Acad. Sci. Paris Sér. I Math.**316**(1993), no. 5, 429–434 (French, with English and French summaries). MR**1209261** - N. D. Aparicio and M. K. Pidcock,
*The boundary inverse problem for the Laplace equation in two dimensions*, Inverse Problems**12**(1996), no. 5, 565–577. MR**1413419**, DOI 10.1088/0266-5611/12/5/003 - E. Beretta and S. Vessella,
*Stable determination of boundaries from Cauchy data*, SIAM J. Math. Anal.**30**(1999), no. 1, 220–232. MR**1656995**, DOI 10.1137/S0036141097325733 - A. L. Bukhgeim, J. Cheng, and M. Yamamoto,
*Stability for an inverse boundary problem of determining a part of a boundary*, Inverse Problems**15**(1999), no. 4, 1021–1032. MR**1710604**, DOI 10.1088/0266-5611/15/4/312 - A. L. Bukhgeim, J. Cheng, and M. Yamamoto,
*Uniqueness and stability for an inverse problem of determining a part of boundary*, Inverse problems in engineering mechanics (Nagano, 1998) Elsevier, Oxford, 1998, pp. 327–336. MR**1675143**, DOI 10.1016/B978-008043319-6/50038-8 - A.L. Bukhgeim, J. Cheng & M. Yamamoto, On a sharp estimate in a non-destructive testing: determination of unknown boundaries. Applied Electromagnetism and Mechanics. K. Miya, M. Yamamoto and Nguyen Xuan Hung eds. JSAEM (1998), 64-75.
- J. Cheng, Y. C. Hon, and M. Yamamoto,
*Stability in line unique continuation of harmonic functions: general dimensions*, J. Inverse Ill-Posed Probl.**6**(1998), no. 4, 319–326. MR**1652109**, DOI 10.1515/jiip.1998.6.4.319 - Jin Cheng and Masahiro Yamamoto,
*Unique continuation on a line for harmonic functions*, Inverse Problems**14**(1998), no. 4, 869–882. MR**1642532**, DOI 10.1088/0266-5611/14/4/007 - Avner Friedman and Michael Vogelius,
*Determining cracks by boundary measurements*, Indiana Univ. Math. J.**38**(1989), no. 3, 527–556. MR**1017323**, DOI 10.1512/iumj.1989.38.38025 - T. S. Angell and R. Kress,
*$L^{2}$-boundary integral equations for the Robin problem*, Math. Methods Appl. Sci.**6**(1984), no. 3, 345–352. MR**761497**, DOI 10.1002/mma.1670060121 - V. Isakov, Stability estimates for obstacles in inverse scattering. J. of Computational and Applied Math. V.42 (1992), 79-88.
- Laurent Lévi,
*Équations quasi linéaires du premier ordre avec contrainte unilatérale*, C. R. Acad. Sci. Paris Sér. I Math.**317**(1993), no. 12, 1133–1136 (French, with English and French summaries). MR**1257226** - P.G. Kaup, F. Santosa & M. Vogelius, Method for imaging corrosion damage in thin plates from electrostatic data. Inverse Problems V.12 (1996), 279–293.
- Oliver Dimon Kellogg,
*Foundations of potential theory*, Die Grundlehren der mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. Reprint from the first edition of 1929. MR**0222317** - E. M. Landis,
*Some questions in the qualitative theory of second-order elliptic equations (case of several independent variables)*, Uspehi Mat. Nauk**18**(1963), no. 1 (109), 3–62 (Russian). MR**0150437** - M.M. Lavrentiev, Some Improperly Posed Problems of Mathematical Physics. (English translation) Springer-Verlag, Berlin (1967).
- M. McIver, Characterization of surface-breaking cracks in metal sheets by using AC electric fields. Proc. R. Soc. London A V.421 (1989), 179–194.
- D.H. Micheal, R.T. Waechter & R. Collins, The measurement of surface cracks in metals by using a.c. electric fields. Proc. R. Soc. London A V.381 (1982), 139–157.
- Sigeru Mizohata,
*The theory of partial differential equations*, Cambridge University Press, New York, 1973. Translated from the Japanese by Katsumi Miyahara. MR**0599580** - L. E. Payne,
*Bounds in the Cauchy problem for the Laplace equation*, Arch. Rational Mech. Anal.**5**(1960), 35–45 (1960). MR**110875**, DOI 10.1007/BF00252897 - Murray H. Protter and Hans F. Weinberger,
*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861** - A. G. Ramm,
*Stability of the solution to inverse obstacle scattering problem*, J. Inverse Ill-Posed Probl.**2**(1994), no. 3, 269–275. MR**1297687**, DOI 10.1515/jiip.1994.2.3.269 - L. Rondi, Uniqueness and stability for the determination of boundary defects by electrostatic measurements. Ref. S.I.S.S.A. 73/98/AF (July, 1998), SISSA ISAS Trieste, Italy.
- Luca Rondi,
*Optimal stability estimates for the determination of defects by electrostatic measurements*, Inverse Problems**15**(1999), no. 5, 1193–1212. MR**1715359**, DOI 10.1088/0266-5611/15/5/306 - R. Siegel, Boundary perturbation method for free boundary problem in convectively cooled continuous casting. Trans. ASME. Sec.C, V.108-1 (1986), 230-235.
- Andrey N. Tikhonov and Vasiliy Y. Arsenin,
*Solutions of ill-posed problems*, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; John Wiley & Sons, New York-Toronto, Ont.-London, 1977. Translated from the Russian; Preface by translation editor Fritz John. MR**0455365**

## Additional Information

**J. Cheng**- Affiliation: Department of Mathematics, Fudan University, Shanghai 200433, China & Department of Mathematics, Faculty of Engineering, Gunma University, Kiryu 376-8515, Japan
- Email: jcheng@math.sci.gunma-u.ac.jp and jcheng@fudan.edu.cn
**Y. C. Hon**- Affiliation: Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Email: maychon@cityu.edu.hk
**M. Yamamoto**- Affiliation: Department of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
- MR Author ID: 231929
- Email: myama@ms.u-tokyo.ac.jp
- Received by editor(s): July 27, 1999
- Received by editor(s) in revised form: June 16, 2000
- Published electronically: June 6, 2001
- Additional Notes: The first author is partly supported by NSF of China (No.19971016). This work was also partially supported by the Research Grants Council of the Hong Kong SAR,China (Grant numbers #9040428) and the Sanwa Systems Development Company Limited (Tokyo, Japan).
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 4123-4138 - MSC (1991): Primary 35R30, 31B20
- DOI: https://doi.org/10.1090/S0002-9947-01-02758-1
- MathSciNet review: 1837223