## Generalized subdifferentials: a Baire categorical approach

HTML articles powered by AMS MathViewer

- by Jonathan M. Borwein, Warren B. Moors and Xianfu Wang PDF
- Trans. Amer. Math. Soc.
**353**(2001), 3875-3893 Request permission

## Abstract:

We use Baire categorical arguments to construct pathological locally Lipschitz functions. The origins of this approach can be traced back to Banach and Mazurkiewicz (1931) who independently used similar categorical arguments to show that “almost every continuous real-valued function defined on [0,1] is nowhere differentiable". As with the results of Banach and Mazurkiewicz, it appears that it is easier to show that almost every function possesses a certain property than to construct a single concrete example. Among the most striking results contained in this paper are: Almost every 1-Lipschitz function defined on a Banach space has a Clarke subdifferential mapping that is identically equal to the dual ball; if $\{T_{1}, T_{2},\ldots , T_{n}\}$ is a family of maximal cyclically monotone operators defined on a Banach space $X$ then there exists a real-valued locally Lipschitz function $g$ such that $\partial _{0}g(x)=\mbox {co}\{T_{1}(x),T_{2}(x),\ldots , T_{n}(x)\}$ for each $x\in X$; in a separable Banach space each non-empty weak$^{*}$ compact convex subset in the dual space is identically equal to the approximate subdifferential mapping of some Lipschitz function and for locally Lipschitz functions defined on separable spaces the notions of strong and weak integrability coincide.## References

- J. M. Borwein,
*Minimal CUSCOS and subgradients of Lipschitz functions*, Fixed point theory and applications (Marseille, 1989) Pitman Res. Notes Math. Ser., vol. 252, Longman Sci. Tech., Harlow, 1991, pp. 57–81 (English, with French summary). MR**1122818** - J. M. Borwein and S. Fitzpatrick, Characterization of Clarke subgradients among one–dimensional multifunctions, in
*Proc. of the Optimization Miniconference II*, edited by B. M. Glover and V. Jeyakumar, (1995), 61–73. - Jonathan M. Borwein and Alexander Ioffe,
*Proximal analysis in smooth spaces*, Set-Valued Anal.**4**(1996), no. 1, 1–24. MR**1384247**, DOI 10.1007/BF00419371 - Jonathan M. Borwein and Warren B. Moors,
*Null sets and essentially smooth Lipschitz functions*, SIAM J. Optim.**8**(1998), no. 2, 309–323. MR**1618798**, DOI 10.1137/S1052623496305213 - Shuzhong Shi and Bingwu Wang,
*Geometric conditions of differentiability for a regular locally Lipschitz function*, Acta Math. Sinica (N.S.)**14**(1998), no. 2, 209–222. MR**1704798**, DOI 10.1007/BF02560208 - Jonathan M. Borwein and Warren B. Moors,
*Essentially smooth Lipschitz functions*, J. Funct. Anal.**149**(1997), no. 2, 305–351. MR**1472362**, DOI 10.1006/jfan.1997.3101 - J. Borwein, W. B. Moors, and Y. Shao,
*Subgradient representation of multifunctions*, J. Austral. Math. Soc. Ser. B**40**(1999), no. 3, 301–313. MR**1674589**, DOI 10.1017/S0334270000010924 - Jonathan M. Borwein, Warren B. Moors, and Xianfu Wang,
*Lipschitz functions with prescribed derivatives and subderivatives*, Nonlinear Anal.**29**(1997), no. 1, 53–63. MR**1447569**, DOI 10.1016/S0362-546X(96)00050-8 - J. M. Borwein and D. Preiss,
*A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions*, Trans. Amer. Math. Soc.**303**(1987), no. 2, 517–527. MR**902782**, DOI 10.1090/S0002-9947-1987-0902782-7 - A. M. Bruckner, J. B. Bruckner, B. S. Thomson, Real Analysis, Prentice–Hall, Inc. 1997.
- Frank H. Clarke,
*Optimization and nonsmooth analysis*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR**709590** - Bernard Dacorogna and Paolo Marcellini,
*General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases*, Acta Math.**178**(1997), no. 1, 1–37. MR**1448710**, DOI 10.1007/BF02392708 - Bernard Dacorogna and Paolo Marcellini,
*Dirichlet problem for nonlinear first order partial differential equations*, Optimization methods in partial differential equations (South Hadley, MA, 1996) Contemp. Math., vol. 209, Amer. Math. Soc., Providence, RI, 1997, pp. 43–57. MR**1472287**, DOI 10.1090/conm/209/02758 - Marián J. Fabian,
*Gâteaux differentiability of convex functions and topology*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. Weak Asplund spaces; A Wiley-Interscience Publication. MR**1461271** - John R. Giles and Warren B. Moors,
*A continuity property related to Kuratowski’s index of noncompactness, its relevance to the drop property, and its implications for differentiability theory*, J. Math. Anal. Appl.**178**(1993), no. 1, 247–268. MR**1231740**, DOI 10.1006/jmaa.1993.1304 - J. R. Giles and Scott Sciffer,
*Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces*, Bull. Austral. Math. Soc.**47**(1993), no. 2, 205–212. MR**1210135**, DOI 10.1017/S0004972700012430 - A. D. Ioffe,
*Approximate subdifferentials and applications. II*, Mathematika**33**(1986), no. 1, 111–128. MR**859504**, DOI 10.1112/S0025579300013930 - A. D. Ioffe,
*Approximate subdifferentials and applications. III. The metric theory*, Mathematika**36**(1989), no. 1, 1–38. MR**1014198**, DOI 10.1112/S0025579300013541 - E. Michael,
*A note on closed maps and compact sets*, Israel J. Math.**2**(1964), 173–176. MR**177396**, DOI 10.1007/BF02759940 - Robert R. Phelps,
*Convex functions, monotone operators and differentiability*, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR**1238715** - D. Preiss,
*Differentiability of Lipschitz functions on Banach spaces*, J. Funct. Anal.**91**(1990), no. 2, 312–345. MR**1058975**, DOI 10.1016/0022-1236(90)90147-D - David Preiss, R. R. Phelps, and I. Namioka,
*Smooth Banach spaces, weak Asplund spaces and monotone or usco mappings*, Israel J. Math.**72**(1990), no. 3, 257–279 (1991). MR**1120220**, DOI 10.1007/BF02773783 - D. Preiss and J. Tišer,
*Points of non-differentiability of typical Lipschitz functions*, Real Anal. Exchange**20**(1994/95), no. 1, 219–226. MR**1313687** - Ralph T. Rockafellar,
*The theory of subgradients and its applications to problems of optimization*, R & E, vol. 1, Heldermann Verlag, Berlin, 1981. Convex and nonconvex functions. MR**623763** - R. Tyrrell Rockafellar and Roger J.-B. Wets,
*Variational analysis*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR**1491362**, DOI 10.1007/978-3-642-02431-3 - Xianfu Wang, Fine and pathological properties of subdifferentials, Ph. D. Thesis, Simon Fraser University, 1999.

## Additional Information

**Jonathan M. Borwein**- Affiliation: Centre for Experimental and Constructive Mathematics, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Email: jborwein@cecm.sfu.ca
**Warren B. Moors**- Affiliation: Department of Mathematics, The University of Waikato, Private bag 3105 Hamilton, New Zealand
- Email: moors@math.waikato.ac.nz
**Xianfu Wang**- Affiliation: Centre for Experimental and Constructive Mathematics, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- MR Author ID: 601305
- Email: xwang@cecm.sfu.ca
- Received by editor(s): March 24, 1999
- Received by editor(s) in revised form: February 25, 2000
- Published electronically: May 14, 2001
- Additional Notes: Research of the first author was supported by NSERC and the Shrum endowment of Simon Fraser University

Research of the second author was supported by a Marsden fund grant, VUW 703, administered by the Royal Society of New Zealand - © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 3875-3893 - MSC (1991): Primary 49J52, 54E52
- DOI: https://doi.org/10.1090/S0002-9947-01-02820-3
- MathSciNet review: 1837212