Szlenk indices and uniform homeomorphisms
HTML articles powered by AMS MathViewer
- by G. Godefroy, N. J. Kalton and G. Lancien
- Trans. Amer. Math. Soc. 353 (2001), 3895-3918
- DOI: https://doi.org/10.1090/S0002-9947-01-02825-2
- Published electronically: May 17, 2001
- PDF | Request permission
Abstract:
We prove some rather precise renorming theorems for Banach spaces with Szlenk index $\omega _0.$ We use these theorems to show the invariance of certain quantitative Szlenk-type indices under uniform homeomorphisms.References
- Dale Alspach, The dual of the Bourgain-Delbaen space, Israel J. Math. 117 (2000), 239–259. MR 1760594, DOI 10.1007/BF02773572
- D. Alspach, R. Judd and E. Odell, The Szlenk index and local $l_1$ indices of a Banach space, to appear.
- Texas functional analysis seminar 1984–1985, Longhorn Notes, University of Texas Press, Austin, TX, 1985. MR 832245
- S. J. Dilworth, Maria Girardi, and Denka Kutzarova, Banach spaces which admit a norm with the uniform Kadec-Klee property, Studia Math. 112 (1995), no. 3, 267–277. MR 1311702
- Y. Dutrieux, Quotients of $c_0$ and Lipschitz-homeomorphisms, Houston J. Math., to appear.
- Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281–288 (1973). MR 336297, DOI 10.1007/BF02762802
- G. Godefroy, N.J. Kalton and G. Lancien, Subspaces of $c_0(\mathbb N)$ and Lipschitz isomorphisms, Geom. Funct. Anal. 10 (2000) 798-820.
- Gilles Godefroy, Nigel J. Kalton, and Gilles Lancien, L’espace de Banach $c_0$ est déterminé par sa métrique, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 9, 817–822 (French, with English and French summaries). MR 1663734, DOI 10.1016/S0764-4442(99)80111-6
- E. Gorelik, The uniform nonequivalence of $L_p$ and $l_p$, Israel J. Math. 87 (1994), no. 1-3, 1–8. MR 1286810, DOI 10.1007/BF02772978
- R. Haydon, Subspaces of the Bourgain-Delbaen space, Studia Math. 139 (2000) 275-293.
- S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), no. 3, 225–251. MR 675426, DOI 10.4064/sm-73-3-225-251
- W. B. Johnson, On quotients of $L_{p}$ which are quotients of $l_{p}$, Compositio Math. 34 (1977), no. 1, 69–89. MR 454595
- W.B. Johnson, J. Lindenstrauss, D. Preiss and G. Schechtman, Almost Fréchet differentiability of Lipschitz mappings between infinite dimensional Banach spaces, Preprint (2000).
- W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), no. 3, 430–470. MR 1392325, DOI 10.1007/BF02249259
- W. B. Johnson and E. Odell, Subspaces of $L_{p}$ which embed into $l_{p}$, Compositio Math. 28 (1974), 37–49. MR 352938
- Nigel J. Kalton and Mikhail I. Ostrovskii, Distances between Banach spaces, Forum Math. 11 (1999), no. 1, 17–48. MR 1673915, DOI 10.1515/form.11.1.17
- Nigel J. Kalton and Dirk Werner, Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178. MR 1324212, DOI 10.1515/crll.1995.461.137
- H. Knaust, E. Odell and T. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, Positivity 3 (1999) 173-199.
- G. Lancien, Théorie de l’indice et problèmes de renormage en géometrie des espaces de Banach, Thèse de doctorat de l’Université Paris VI, January 1992.
- Gilles Lancien, On uniformly convex and uniformly Kadec-Klee renormings, Serdica Math. J. 21 (1995), no. 1, 1–18. MR 1333523
- G. Lancien, Réflexivité et normes duales possédant la propriété uniforme de Kadec-Klee, Publ. Math. de la Fac. des sciences de Besançon, Fasicule 14 (1993-94) 69-74.
- D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $l_{1}(\Gamma )$, J. Functional Analysis 12 (1973), 177–187. MR 0342987, DOI 10.1016/0022-1236(73)90022-0
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- V. D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspehi Mat. Nauk 26 (1971), no. 6(162), 73–149 (Russian). MR 0420226
- E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing $l^{1}$, Israel J. Math. 20 (1975), no. 3-4, 375–384. MR 377482, DOI 10.1007/BF02760341
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337
- M. Ribe, Existence of separable uniformly homeomorphic nonisomorphic Banach spaces, Israel J. Math. 48 (1984), no. 2-3, 139–147. MR 770696, DOI 10.1007/BF02761159
- W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. MR 227743, DOI 10.4064/sm-30-1-53-61
Bibliographic Information
- G. Godefroy
- Affiliation: Equipe d’Analyse, Université Paris VI, Boite 186, 4, Place Jussieu, 75252 Paris Cedex 05, France
- Email: gig@ccr.jussieu.fr
- N. J. Kalton
- Affiliation: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211
- Email: nigel@math.missouri.edu
- G. Lancien
- Affiliation: Equipe de Mathématiques - UMR 6623, Université de Franche-Comté, F-25030 Besançon cedex
- MR Author ID: 324078
- Email: GLancien@vega.univ-fcomte.fr
- Received by editor(s): June 15, 1999
- Received by editor(s) in revised form: July 3, 2000
- Published electronically: May 17, 2001
- Additional Notes: The second author was supported by NSF grant DMS-9870027.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3895-3918
- MSC (2000): Primary 46B03, 46B20
- DOI: https://doi.org/10.1090/S0002-9947-01-02825-2
- MathSciNet review: 1837213