IN Variant Distributions Supported On
The Nilpotent Cone of a Semisimple Lie Algebra

THIERRY LEVASSEUR

Abstract. Let \(g \) be a semisimple complex Lie algebra with adjoint group \(G \) and \(D(g) \) be the algebra of differential operators with polynomial coefficients on \(g \). If \(g_0 \) is a real form of \(g \), we give the decomposition of the semisimple \(D(g)^G \)-module of invariant distributions on \(g_0 \) supported on the nilpotent cone.

0. Introduction

Let \(g \) be a semisimple complex Lie algebra with adjoint group \(G \). Choose a Cartan subalgebra \(h \) of \(g \) and let \(W \) be the associated Weyl group. Denote by \(W_h \) the set of isomorphism classes of irreducible \(W \)-modules and by \(H(h) \) the graded vector space of \(W \)-harmonic polynomials on \(h \). For \(\chi \in W \), set
\[
b(\chi) = \inf \{ j \in \mathbb{N} : |H^j(h^*) : \chi| \neq 0 \}
\]
and choose a \(W \)-submodule \(V_\chi \subset H^{b(\chi)}(h^*) \) in the class of \(\chi \). Denote by \(d(\chi) \) the dimension of \(V_\chi \).

Let \(S(g^*) \) be the algebra of polynomial functions on \(g \) and \(D(g) \) be the algebra of differential operators on \(g \), with coefficients in \(S(g^*) \). The group \(G \) acts on \(S(g^*) \), via the adjoint action, and hence has an induced action on \(S(g^*) \), \(S(g) \) and \(D(g) \). Denote the differential of this action by \(\tau : g \rightarrow D(g) \). Let \(S(g)^G \) and \(S(g^*)^G \) be the set of invariant elements without constant term. Recall that \(N(g) \), the nilpotent cone of \(g \), is the variety of zeroes of the ideal \(S(g^*) \).

Let \(g_0 \) be a real form of \(g \) with adjoint group \(G_0 \subset G \). Denote by \(Db(g_0) \) the \(D(g) \)-module of distributions on \(g_0 \). Then, the subspace of invariant distributions \(Db(g_0)^G = \{ T \in Db(g_0) : \tau(g).T = 0 \} \) is a \(D(g)^G \)-module, containing the submodule of invariant distributions supported on the nilpotent cone
\[
Db(g_0)^G_{nil} = \{ \Theta \in Db(g_0)^G : \text{Supp} \Theta \subset N(g_0) \}
\]
where \(N(g_0) = N(g) \cap g_0 \) is the nilpotent cone of \(g_0 \). The structure of \(Db(g_0)^G_{nil} \) as a vector space is well understood, see, for example, [1][5]. Let \([h_1], \ldots, [h_r] \) be the conjugacy classes of Cartan subalgebras of \(g_0 \). For each \(j \), let \(\varepsilon_{i,j} : W(h_j) \rightarrow \{ \pm 1 \} \) be

Received by the editors November 17, 1998.
1991 Mathematics Subject Classification. Primary 14L30, 16S32, 17B20, 22E46.
Key words and phrases. Semisimple Lie algebra, invariant distribution, nilpotent orbit, Weyl group representation.

Research partially supported by EC TMR network “Algebraic Lie Representations”, Grant No. ERB FMRX-CT97-0100.

©2001 American Mathematical Society
the imaginary signature of the real Weyl group \(W(\mathfrak{h}_j)\). Then [5 Proposition 6.1.1] there exists a vector space isomorphism

\[
\bigoplus_{j=1}^{r} S(\mathfrak{h}_j, \mathbb{C})_{\varepsilon_{I,j}} \simeq \text{Db}(\mathfrak{g}_0)^{G_0}_{\text{nil}}
\]

where \(S(\mathfrak{h}_j, \mathbb{C})_{\varepsilon_{I,j}}\) is the isotypic component of type \(\varepsilon_{I,j}\) in the \(W(\mathfrak{h}_j)\)-module \(S(\mathfrak{h}_j, \mathbb{C})\).

One aim of this note is to give a complete description of the \(D(\mathfrak{g})^G\)-module \(\text{Db}(\mathfrak{g}_0)^{G_0}_{\text{nil}}\). This description is given in terms of the simple summands of the equivariant holonomic \(D(\mathfrak{g})\)-module

\[
\mathcal{M} = D(\mathfrak{g})/(D(\mathfrak{g})\tau(\mathfrak{g}) + D(\mathfrak{g})S_+(\mathfrak{g}^*)^G).
\]

By [9], [13] or [13], it is known that we have a decomposition

\[
\mathcal{M} = \bigoplus_{\chi \in W^\infty} d(\chi) \mathcal{M}_\chi
\]

where the \(\mathcal{M}_\chi\) are pairwise non-isomorphic simple \(D(\mathfrak{g})\)-modules. Moreover, the support (in \(\mathfrak{g}\)) of \(\mathcal{M}_\chi\) is the closure of a nilpotent orbit and \(\mathcal{M}_\chi^G\) is a simple \(D(\mathfrak{g})^G\)-module. Then we have, see Corollary 4.4

Theorem A. The \(D(\mathfrak{g})^G\)-module \(\text{Db}(\mathfrak{g}_0)^{G_0}_{\text{nil}}\) decomposes as

\[
\text{Db}(\mathfrak{g}_0)^{G_0}_{\text{nil}} \cong \bigoplus_{\chi \in W^\infty} m_\chi \mathcal{M}_\chi^G
\]

where \(m_\chi = \sum_{j=1}^{r} \dim V^{\varepsilon_{I,j}}\).

This theorem is proved by combining the isomorphism (*) and the properties, established in [13] [11] [13], of the Harish-Chandra homomorphism

\[
\delta : D(\mathfrak{g})^G \rightarrow D(\mathfrak{h})^W.
\]

In the particular case where \(\mathfrak{g}_0\) is a complex Lie algebra \(\mathfrak{g}_1\) (viewed as a real Lie algebra), Theorem A was proved by N. Wallach [18]. In this case, \(\mathfrak{g} \simeq \mathfrak{g}_1 \times \mathfrak{g}_1\), \(W \simeq W_1 \times W_1\) where \(W_1\) is the Weyl group of \(\mathfrak{g}_1\). Then, each \(\mathcal{M}_\chi\) occurring in the decomposition of \(\text{Db}(\mathfrak{g}_0)^{G_0}_{\text{nil}}\) is of the form \(\mathcal{M}_\phi \boxtimes \mathcal{M}_\phi\) with \(\chi = \phi \boxtimes \phi, \phi \in W_1^\infty\), and one has \(m_\chi = 1\). Hence \(\text{Db}(\mathfrak{g}_0)^{G_0}_{\text{nil}} \cong \bigoplus_{\phi \in W_1^\infty} \mathcal{M}_\phi^G \boxtimes \mathcal{M}_\phi^G\) as a \(D(\mathfrak{g})^G\)-module.

The next corollary is an easy consequence of Theorem A

Corollary B. Let \(\chi \in W^\infty\), then, \(\mathcal{M}_\chi \cong D(\mathfrak{g}).\Theta\) for some \(\Theta \in \text{Db}(\mathfrak{g}_0)\) if, and only if, \(V^{\varepsilon_{I,j}} \neq 0\) for some \(j \in \{1, \ldots, r\}\).

In Remark 3.1 we apply this result to give examples of modules \(\mathcal{M}_\chi\) which cannot be generated by a distribution on any real form of \(\mathfrak{g}\).

1. **Preliminary results**

We retain the notation of the introduction. Denote by \(\Delta\) the root system of \(\mathfrak{h}\) in \(\mathfrak{g}\) and fix a system \(\Delta^+\) of positive roots. Set \(n = \dim \mathfrak{g}, \ell = \dim \mathfrak{h}\) and \(\nu = \# \Delta^+, \) hence \(n = 2\nu + \ell\). Let \(\pi\) be the product of positive roots and recall that \(x \in \mathfrak{g}\) is called generic if \(\pi(x) \neq 0\). If \(a \subset \mathfrak{g}\), we denote by \(a'\) the set of generic elements in \(a\).

For \(q \in S(\mathfrak{g})\), let \(\partial(q) \in D(\mathfrak{g})\) be the corresponding differential operator with constant coefficients. Let \(\{e_i\}_{1 \leq i \leq n}\) be an orthonormal basis of \(\mathfrak{g}\) with respect to the Killing form \(\kappa\) such that \(\{e_i\}_{1 \leq i \leq \ell}\) is a basis of \(\mathfrak{h}\). Denote by \(x_i \in S(\mathfrak{g}^*)\),
1 \leq i \leq n$, the associated coordinate functions; thus $\partial(e_i)$ identifies with the partial derivative $\partial_i = \frac{\partial}{\partial x_i}$. Denote the Euler vector fields on \mathfrak{g} and \mathfrak{h} by $E_\mathfrak{g} = \sum_{i=1}^\ell x_i \partial_i$ and $E_\mathfrak{h} = \sum_{i=1}^\ell x_i \partial_i$.

We now give some notation and results from [11][12][13][18]. Recall first that the algebra homomorphism, defined by Harish-Chandra,

$$\delta : \mathcal{D}(\mathfrak{g})^G \longrightarrow \mathcal{D}(\mathfrak{h})^W$$

extends the Chevalley isomorphisms $S(\mathfrak{g})^G \cong S(\mathfrak{h})^W$ and $S(\mathfrak{g}^*)^G \cong S(\mathfrak{h}^*)^W$. The map δ is surjective and its kernel is $\mathcal{I} = (\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}))^G$. This enables one to identify, through δ, modules over $A(\mathfrak{g}) := \mathcal{D}(\mathfrak{g})^G/\mathcal{I}$ with $\mathcal{D}(\mathfrak{h})^W$-modules.

Lemma 1.1. Let $D \in \mathcal{D}(\mathfrak{g})^G$. Then $D = P + Q$ with $P \in \mathbb{C}\langle S(\mathfrak{g})^G, S(\mathfrak{g}^*)^G \rangle$ and $Q \in \mathcal{I}$.

Proof. By [11], we know that $\mathcal{D}(\mathfrak{h})^W = \mathbb{C}\langle S(\mathfrak{h})^W, S(\mathfrak{h}^*)^W \rangle$. The lemma is therefore a consequence of the properties of δ previously recalled. \(\square \)

Recall that the $(\mathcal{D}(\mathfrak{h})^W, W)$-module $S(\mathfrak{h}^*)$ decomposes as

$$S(\mathfrak{h}^*) \cong \bigoplus_{x \in W^\circ} V_x \otimes_{\mathbb{C}} V_x$$

where $V_x = \text{Hom}_{W}(V_x, S(\mathfrak{h}^*))$ is a simple $(\mathcal{D}(\mathfrak{h})^W)$-module. Let $\{v_1^\alpha, \ldots, v_\lambda^\alpha \}$ be a basis of V_x, then $V_x \cong \mathcal{D}(\mathfrak{h})^W.v_\lambda^\alpha$ for all j and [11] implies that

$$S(\mathfrak{h}^*) = \bigoplus_{x \in W^\circ} \bigoplus_{j=1}^{d(\lambda)} \mathcal{D}(\mathfrak{h})^W.v_\lambda^j.$$

Now, set $\mathcal{N} = \mathcal{D}(\mathfrak{g})/\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}) \otimes_{A(\mathfrak{g})} S(\mathfrak{h}^*)$ and $\mathcal{N}_x = \mathcal{D}(\mathfrak{g})/\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}) \otimes_{A(\mathfrak{g})} V_x$. We have

$$\mathcal{N} = \mathcal{D}(\mathfrak{g})/(\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}) + \mathcal{D}(\mathfrak{g})S_+(\mathfrak{g})^G)$$

and, using [11],

$$\mathcal{N} = \bigoplus_{x \in W^\circ} \mathcal{N}_x \otimes_{\mathbb{C}} V_x.$$

Then each \mathcal{N}_x is a simple (holonomic) $\mathcal{D}(\mathfrak{g})$-module [13] and, therefore, \mathcal{N} is a semisimple $\mathcal{D}(\mathfrak{g})$-module (see also [9]). Let $\mathbb{C}(\mathcal{N})$ be the full subcategory of finitely generated $\mathcal{D}(\mathfrak{g})$-modules of the form $\bigoplus_{x \in W^\circ} m_x \mathcal{N}_x$, $m_x \in \mathbb{N}$. From [13] we know that the category $\mathbb{C}(\mathcal{N})$ is equivalent to the category W-mod (of finite dimensional W-modules) via the functor

$$\text{Sol} : \mathbb{C}(\mathcal{N}) \longrightarrow W\text{-mod}, \quad \text{Sol}(N) = \text{Hom}_{\mathcal{D}(\mathfrak{h})^W}(N^G, S(\mathfrak{h}^*))$$

where W acts on $\text{Sol}(N)$ through its natural action on $S(\mathfrak{h}^*)$.

The Killing form κ induces a G-isomorphism $\mathfrak{g} \cong \mathfrak{g}^*$ and an algebra automorphism κ of $\mathcal{D}(\mathfrak{g})$, defined by $\kappa(\partial(v)) = \kappa(v, -)$, $\kappa(\kappa(v, -)) = -\partial(v)$, for all $v \in \mathfrak{g}$. Hence, in coordinates, $\kappa(\partial_j) = x_j$, $\kappa(x_j) = -\partial_j$. Set $i = \sqrt{-1} \in \mathbb{C}$ and denote by i the automorphism of $\mathcal{D}(\mathfrak{g})$ given by $i(\partial_j) = -i\partial_j$, $i(x_j) = ix_j$. Define then the “Fourier transformation” $F_\mathfrak{g} \in \text{Aut} \mathcal{D}(\mathfrak{g})$ by $F_\mathfrak{g} = i \circ \kappa = \kappa \circ i^{-1}$; thus $F_\mathfrak{g}(x_j) = i\partial_j$, $F_\mathfrak{g}(\partial_j) = ix_j$. One easily checks that $\kappa(\tau(x)) = F_\mathfrak{g}(\tau(x)) = \tau(x)$
for all $x \in \mathfrak{g}$; moreover, κ and F_Ψ are G-equivariant. Similarly, since κ is non-degenerate and W-invariant on \mathfrak{h}, one can define W-equivariant automorphisms κ and $F_\Psi = \mathbf{i} \circ \kappa$ in $\text{Aut} \, D(\mathfrak{h})$.

Lemma 1.2. One has $\delta \circ F_\Psi = F_\Psi \circ \delta$.

Proof. A direct computation shows that $\delta(F_{\Psi}(P)) = F_{\Psi}(\delta(P))$ when P belongs to $S(\mathfrak{g})^G$ or $S(\mathfrak{g}^*)^G$. Since δ is a homomorphism, it follows that $\delta(F_{\Psi}(P)) = F_{\Psi}(\delta(P))$ for all $P \in \mathbb{C}(S(\mathfrak{g})^G, S(\mathfrak{g}^*)^G)$. Now, let $D \in D(\mathfrak{g})^G$ and write $D = P + Q$ as in Lemma 1.1. Then, since $F_{\Psi}(I) = I$, we have $\delta(F_{\Psi}(D)) = \delta(F_{\Psi}(P)) = F_{\Psi}(\delta(P)) = F_{\Psi}(\delta(D))$. \hfill \Box

Recall that $\mathcal{H}(\mathfrak{h}^*)$ is the vector space of W-harmonic polynomials on \mathfrak{h}. Hence

$$\mathcal{H}(\mathfrak{h}^*) = \{ f \in S(\mathfrak{h}^*) : \partial(q).f = 0 \text{ for all } q \in S_+(\mathfrak{h})^W \}$$

and, as a W-module, $\mathcal{H}(\mathfrak{h}^*)$ identifies with the regular representation of W. The vector space $\mathcal{H}(\mathfrak{h}^*)$ is a graded subspace of $S(\mathfrak{h}^*)$ and we set $\mathcal{H}(\mathfrak{h}^*) = S(\mathfrak{h}^*) \cap \mathcal{H}(\mathfrak{h}^*)$, $0 \leq j \leq \nu$. Define the harmonic elements of $S(\mathfrak{h})$ by $\mathcal{H}(\mathfrak{h}) = F_{\Psi}(\mathcal{H}(\mathfrak{h}^*)) = \bigoplus_{j=0}^\nu \mathcal{H}_j(\mathfrak{h})$. (We could as well have set $\mathcal{H}(\mathfrak{h}) = \kappa(\mathcal{H}(\mathfrak{h}^*))$, since $\mathcal{H}(\mathfrak{h}^*)$ is stable under \mathbf{i}.)

Since $V_\chi \subset \mathcal{H}(\mathfrak{h}^*)$, we have $(E_\chi - b(\chi)).v^{\chi} = 0$. For all $d \in L := \text{ann}_{D(\mathfrak{h})^W}(v^{\chi})$, we have $(E_\chi - b(\chi), d) = (E_\chi, d) \in L$. It follows that $L = \bigoplus_{k \in \mathbb{Z}} L \cap D^k(\mathfrak{h})^W$, where $D^k(\mathfrak{h}) = \{ d \in D(\mathfrak{h}) : [E_\chi, d] = kd \}$. Equivalently, L is stable under the \mathbb{C}^*-action on $D(\mathfrak{h})$ given by $f \mapsto \lambda f$, $\partial(v) \mapsto \lambda^{-1} \partial(v)$, $f \in \mathfrak{h}^*$, $v \in \mathfrak{h}$. In particular, we see that $F_{\Psi}(L) = \kappa(L)$.

Let R be a ring and $\alpha \in \text{Aut}(R)$. If M is an R-module, we define the R-module M^α to be the abelian group M with action of $a \in R$ on $x \in M$ given by $a x = \alpha(a)x$. This applies to the modules N, N_{χ} and the automorphism $\alpha = F_{\Psi}^{-1}$. Define

$$M = N_{F_{\Psi}^{-1}}^{\chi'}, \quad M_{\chi} = N_{\chi'}^{F_{\Psi}^{-1}}.$$

Thus, from 1.2 and 1.3, we obtain

$$M = D(\mathfrak{g})/(D(\mathfrak{g})\tau(\mathfrak{g}) + D(\mathfrak{g})S_+^{\nu}(\mathfrak{g}^*)^G) \cong \bigoplus_{\chi \in W^\nu} M_{\chi} \otimes_{\mathbb{C}} V_{\chi}.$$

Remark. In 1.3 one defines M_{χ} to be $N_{\chi}^{\nu^{-1}}$, but the two definitions agree. Indeed, let $V_{\chi} \cong D(\mathfrak{h})^W \cdot v_{\chi}^J = D(\mathfrak{h})^W/L$ be as above. Then,

$$N_{\chi} \cong D(\mathfrak{g})/J, \quad J \cong D(\mathfrak{g})\tau(\mathfrak{g}) + D(\mathfrak{g})S_+^{\nu}(\mathfrak{g}^*)^G + D(\mathfrak{g})\delta^{-1}(L).$$

Write $N_{\chi} = D(\mathfrak{g}).(I \otimes_{A(\mathfrak{g})} v_{\chi}^J)$, where I is the canonical generator of $D(\mathfrak{g})/D(\mathfrak{g})\tau(\mathfrak{g})$. From $\delta(E_\chi) = E_\chi - \nu$, we get that $(E_\chi - (b(\chi) - \nu))(I \otimes_{A(\mathfrak{g})} v_{\chi}^J) = 0$. It follows (as above) that J is stable under the natural \mathbb{C}^*-action on $D(\mathfrak{g})$. Hence, $F_{\Psi}(J) = \kappa(J)$ and we have $N_{\chi}^{\nu^{-1}} = N_{F_{\Psi}^{-1}}^{\chi'}$.

We can define the category $C(M)$ similar to $C(N)$. We clearly have $M \in C(M)$ if, and only if, $N = M^{F_{\Psi}} \in C(N)$. Moreover, by 1.3, this is equivalent to saying that M is a G-equivariant finitely generated $D(\mathfrak{g})$-module such that $M = D(\mathfrak{g})M^G$ and $\text{Supp} \, M \subset \text{N}(\mathfrak{g})$. This is also equivalent to: N is a G-equivariant finitely generated $D(\mathfrak{g})$-module such that $N = D(\mathfrak{g})N^G$ and N is S_+-finite (meaning that each $v \in N$ is killed by a power of $S_+(\mathfrak{g})^G$).

Recall that $N_{\chi}^G \cong V_{\chi}$ through the identification of $A(\mathfrak{g})$ with $D(\mathfrak{h})^W$.

Lemma 1.3. One has $M_x^G \sim \langle V^x \rangle F_{\theta}^{-1}$.

Proof. Write $N_x = D(g)/J$. Then, $M_x = D(g)/F_{\theta}(J)$ and $M_x^G = D(g)^G/F_{\theta}(J^G)$. By Lemma 1.2, $\delta(D(g)(J^G)) = F_{\theta}(\delta(J^G))$, therefore $M_x^G \sim \langle D(h) \rangle F_{\theta}(\delta(J^G))$. Since $V^x \cong D(h)W/\langle D(h) \rangle$, the lemma follows.

Let g_0 be a real form of g with adjoint group $G_0 \subset G$. There exists a natural action of $D(g)$ on $Db(g_0)$ defined by

$$\langle \partial(v).T, f \rangle = \langle T, -\partial(v).f \rangle, \quad \langle \xi, T, f \rangle = \langle T, \xi f \rangle$$

for all $T \in Db(g_0), f \in C_c^\infty(g_0), v \in g^*, \xi \in g^*$. This induces a structure of $D(g)^G$-module on $Db(g_0)^G$. From $T. Db(g_0)^G = 0$, we obtain a natural $A(g)$-module structure on $Db(g_0)^G$.

Fix a basis $\{u_1, \ldots, u_n\}$ of g_0 such that $\kappa(u_j, u_k) = \pm \delta_{jk}$ and denote by dy the Lebesgue measure associated to this choice. Let $S(g_0)$ be the Schwartz space on g_0. Define, as in [13] Appendix 1, the Fourier transform of $f \in S(g_0)$ by

$$\hat{f}(x) = \frac{1}{(2\pi)^{n/2}} \int_{g_0} f(y)e^{-i\kappa(y,x)}dy.$$

Let T be a tempered distribution on g_0. The Fourier transform of T is defined by

$$\langle \hat{T}, f \rangle = \langle T, \hat{f} \rangle$$

for $f \in C_c^\infty(g_0)$. Then we have

(1.4) $\forall D \in D(g), \forall T \in Db(g_0), \quad \hat{D}T = F_{\theta}(D)\hat{T}.$

Recall [2] that $T \in Db(g_0)$ is said to be homogeneous of degree d if, for all $f \in C_c^\infty(g_0), t \in \mathbb{R}^*, \langle T, f_t \rangle = t^d \langle T, f \rangle$, where $f_t(v) = t^{-n}f(t^{-1}v)$. Then, a homogeneous distribution of degree d is tempered and satisfies $E_{\theta}. T = dT$. We will need the following well-known result:

Lemma 1.4. Let $T \in Db(g_0)$ be tempered and set $M = D(g).T$. Then $M^{F_{\theta}} \cong D(g)\hat{T}.$

Proof. By [13] we have $\text{ann}_D(g)(\hat{T}) = F_{\theta}^{-1}(\text{ann}_D(g)(T))$. Hence the result.

Let $N(g_0)$ be the set of nilpotent elements of g_0. Define $D(g)$-submodules of $Db(g_0)$ by

$$Db(g_0)_{nil} = \{\Theta \in Db(g_0) : \text{Supp } \Theta \subset N(g_0)\},$$

$$Db(g_0)_{S_+} = \{T \in Db(g_0) : \exists k \in \mathbb{N}, S_+(g)^k.T = 0\}.$$

The elements of $Db(g_0)_{S_+}$ are called S_+-finite. Observe that $Db(g_0)^{G_0}_{nil}$ and $Db(g_0)^{G_0}_{S_+}$ are $D(g)^G$-modules. The next theorem is a consequence of the results proved in [13].

Theorem 1.5. (1) $Db(g_0)^{G_0}_{nil} = \{\Theta \in Db(g_0)^{G_0} : D(g).\Theta \in C(M)\}.$

(2) $Db(g_0)^{G_0}_{S_+} = \{T \in Db(g_0)^{G_0} : D(g).T \in C(N)\}.$

(3) $\Theta \in Db(g_0)^{G_0}_{nil} \iff \hat{\Theta} \in Db(g_0)^{G_0}_{S_+}.$

Proof. (1) follows from [13] Theorem 6.1, since $D(g).\Theta \in C(M)$ is equivalent to $D(g)^G.\Theta \cong \bigoplus_{\chi \in \mathbb{W}^+} m_{\chi}M_x^G.$

(2) and (3) are consequences of (1) and Lemma 1.4.
Remark 1.6. Let $T \in \mathbb{D}b(g_0)^{G_0}_{S_+}$. Recall that by the Harish-Chandra regularity theorem, T is given by

$$
\langle T, f \rangle = \int_{g_0} F_T(y)f(y)dy
$$

for some analytic function F_T on g_0^*, locally integrable on g_0.

2. **The distributions $\Theta_{u,\Gamma}$ and $T_{p,\Gamma}$**

Let g_0 be a real form of g, with adjoint group G_0, h_0 a Cartan subalgebra and let H_0 be the associated Cartan subgroup. Set $h = \mathbb{C} \otimes \mathbb{R} h_0$ and adopt the notation of [1]. Denote by $W(h_0)$ the real Weyl group, i.e. $W(h_0) = N_{G_0}(h_0)/Z_{G_0}(h_0)$. Define

$$
\Delta_R = \{ \alpha \in \Delta : \alpha(h_0) \subset \mathbb{R} \} \quad \text{(the real roots)},
$$

$$
\Delta_I = \{ \alpha \in \Delta : \alpha(h_0) \subset i\mathbb{R} \} \quad \text{(the imaginary roots)}.
$$

A root which is neither real nor imaginary is called complex. Let Δ_R^+ be a positive system of roots in Δ_I and set $\pi_I = \prod_{\alpha \in \Delta_R^+} \alpha$. Then each $w \in W(h_0)$ permutes the imaginary roots and one can define a character of $W(h_0)$, the imaginary signature, by

$$
\varepsilon_I : W(h_0) \to \{ \pm 1 \}, \quad w.\pi_I = \varepsilon_I(w)\pi_I.
$$

If V is a $W(h_0)$-module we denote by V^{ε_I} the isotypic component of type ε_I in V.

In the sequel, we adopt the notation of [3] with the minor difference that we use $e^{-i\alpha(x,y)}$ in the definition of the Fourier transform.

Let $h \in h_0'$ and $f \in C^\infty_c(g_0)$. Define [3, §3.1] the distribution $\mu_{G_0,h}$ by

$$
\langle \mu_{G_0,h}, f \rangle = | \det \text{ad}_{g_0/h_0}(h) |^{\frac{1}{2}} \int_{G_0/H_0} f(g,h)dg.
$$

Then one defines the function $J_{g_0}(f)$, or simply $J(f)$, on h_0' by

$$
J_{g_0}(f) = \{ h \mapsto \langle \mu_{G_0,h}, f \rangle \}.
$$

Set $h_0^{reg} = \{ h \in h_0 : \pi_I(h) \neq 0 \}$ and fix a connected component Γ of h_0^{reg}. Let $u \in S(h)$; Harish-Chandra has shown, see [17, §8.1, p. 123], that one can define a tempered G_0-invariant distribution on g_0 by

$$
(2.1) \quad \forall f \in C^\infty_c(g_0), \quad \langle \Theta_{u,\Gamma}, f \rangle = \lim_{h \in \Gamma} [\partial(h).J(f)](h).
$$

Furthermore $\Theta_{u,\Gamma} \in \mathbb{D}b(g_0)^{G_0}_{S_+}$ and, when $u \in S^b(h)$, $\Theta_{u,\Gamma}$ is homogeneous of degree $-b - \nu - \ell$.

Now let $p \in S(h^*)$ and define $T \in \mathbb{D}b(g_0)^{G_0}_{S_+}$ by

$$
(2.2) \quad T_{p,\Gamma} = \hat{\Theta}_{F_p(p),\Gamma} = \{ f \mapsto \lim_{h \in \Gamma} [\partial(F_h(p)).J(f)](h) \}.
$$

Then, $T_{p,\Gamma}$ is tempered and is homogeneous of degree $b - \nu$ when $p \in S^b(h^*)$.

Lemma 2.1. (1) Let $\varphi \in S(g)^G$. Then, $\varphi T_{p,\Gamma} = T_{\delta(\varphi)p,\Gamma}$.

(2) Let $q \in S(g)^G$. Then, $\partial(q).T_{p,\Gamma} = T_{\partial(\delta(q))p,\Gamma}$.

Proof. Set \(u = F_b(p), \phi = \delta(\varphi) \in S(h)^W \) and \(s = \delta(q) \in S(h)^W \). Let \(f \in C_c^\infty(g_0) \).

1. By definition, see (2.2), \(\langle \varphi_{T_{\Gamma}, f} \rangle = \lim_{h \to 0} [\partial(u).J(\varphi f)](h) \). But, \(J \) Lemma 3.2.7, p. 38, (1.4) and Lemma 1.2 imply that \(J(\varphi f) = \partial(F_b(\phi)).J(\hat{f}) \).

Hence,
\[
\langle \varphi_{T_{\Gamma}, f} \rangle = \lim_{h \to 0} [\partial(u).\partial(F_b(\phi)).J(\hat{f})](h) = \lim_{h \to 0} [\partial(F_b(\phi))].J(\hat{f})(h)
\]

as desired.

2. By (1.4), \(\partial(h).T_{\Gamma} \) is the Fourier transform of \(F_b^{-1}(q)\Theta_{\Gamma} \), hence
\[
\langle \partial(h).T_{\Gamma}, f \rangle = \lim_{h \to 0} [\partial(u).J(F_b^{-1}(q)\hat{f})](h).
\]

Set \(g = J(\hat{f}) \). From \(J \) Lemma 3.2.7, p. 38 and Lemma 1.2 we obtain that \(J(F_b^{-1}(q)\hat{f}) = F_b^{-1}(s)g \). Therefore
\[
\langle \partial(h).T_{\Gamma}, f \rangle = \lim_{h \to 0} [\partial(u).J(F_b^{-1}(s)g)](h).
\]

Recall (see \(J \)) that we have chosen a coordinate system \(\{x_j, e_j\}_{1 \leq j \leq \ell} \). With standard notation, we write \(x^\alpha = \prod_{k=1}^\ell x_k^{\alpha_k}, e^\mu = \prod_{k=1}^\ell e_k^{\mu_k} \) and
\[
p = \sum_{\alpha \in \mathbb{N}^\ell} p_\alpha x^\alpha, \quad s = \sum_{\mu \in \mathbb{N}^\ell} s_\mu e^\mu.
\]

Set \(\partial^\mu = \prod_j \partial(e_j)^{\mu_j} \); thus \(\partial(s) = \sum_{\mu \in \mathbb{N}^\ell} s_\mu \partial^\mu \). Order \(\mathbb{N}^\ell \) by saying that \(\mu \leq \alpha \) if \(\mu_j \leq \alpha_j \) for all \(j \). Set \(\alpha! = \prod_j \alpha_j! \) and \(\binom{\alpha}{\mu} = \prod_j \binom{\alpha_j}{\mu_j} \), when \(\mu \leq \alpha \). Then,
\[
\partial^\mu(x^\alpha) = \begin{cases} 0 & \text{if } \mu \not\leq \alpha, \\ \frac{\alpha!}{(\alpha-\mu)!} x^{\alpha-\mu} & \text{if } \mu \leq \alpha. \end{cases}
\]

Now we have \(u = F_b(p) = \sum_\alpha p_\alpha x^\alpha \partial^\alpha \) and \(F_b^{-1}(s) = \sum_\mu s_\mu \partial^\mu x^\mu \). Therefore, using the Leibniz formula, we get that
\[
\partial(u).J(F_b^{-1}(s)g) = \sum_\alpha p_\alpha x^\alpha \partial^\alpha (F_b^{-1}(s)g)
\]
\[
= \sum_\alpha \sum_\beta \sum_{\mu \leq \alpha} p_\alpha s_\mu \partial^{\alpha-\beta} \left(x^\mu \partial^\beta (F_b^{-1}(s)g) \right).
\]

But \(\lim_{h \to 0} \partial^\beta (x^\mu)(h) = 0 \) unless \(\beta = \mu \), hence
\[
\lim_{h \to 0} [\partial(u).J(F_b^{-1}(s)g)](h) = \sum_\alpha \sum_\mu \sum_{\beta \leq \alpha} p_\alpha s_\mu \partial^{\alpha-\beta} \left(x^\mu \partial^\beta (F_b^{-1}(s)g) \right) \mu! \lim_{h \to 0} [\partial^{\alpha-\beta}](g)(h).
\]

On the other hand, we have
\[
\langle T_{\partial(s), p, \Gamma}, f \rangle = \lim_{h \to 0} [\partial(F_b(\partial(s), p)).J(\hat{f})](h).
\]

Since \(\partial(s) = \sum_\alpha \sum_{\mu \leq \alpha} \frac{\alpha!}{(\alpha-\mu)!} s_\mu p_\alpha x^\alpha \partial^\mu \), we obtain that
\[
\langle T_{\partial(s), p, \Gamma}, f \rangle = \sum_\alpha \sum_{\mu \leq \alpha} \frac{\alpha!}{(\alpha-\mu)!} s_\mu p_\alpha x^\alpha \partial^{\alpha-\beta} \left(x^\mu \partial^\beta (F_b^{-1}(s)g) \right) \mu! \lim_{h \to 0} [\partial^{\alpha-\beta}](g)(h).
\]

This proves the desired equality.
\(\square \)
Theorem 2.2. Let \(p \in S(\mathfrak{h}^*) \) and \(D \in \mathcal{D}(g)^G \). Then, \(D.T_{p,\Gamma} = T_{\delta(D),p,\Gamma} \).

Proof. Since \(T_{p,\Gamma} \) is \(G_0 \)-invariant, we have \(I.T_{p,\Gamma} = 0 \). Let \(P \in \mathbb{C}(S(g)^G, S(\mathfrak{g}^*)^G) \); by Lemma 2.4 and an obvious induction, we obtain that \(P.T_{p,\Gamma} = T_{\delta(P),p,\Gamma} \). The theorem then follows from Lemma 1.1.

Recall, see Remark 1.6 that \(\tilde{\Theta}_{u,\Gamma} \in \text{Db}(\mathfrak{g}_0)^{G_0}_{S_u^+} \) is determined by a locally integrable function on \(\mathfrak{g}_0 \). We still denote this function by \(\tilde{\Theta}_{u,\Gamma} \).

Lemma 2.3. ([5 Lemme 6.1.2]) There exists \(c_T \in \mathbb{C}^* \), such that

\[
\alpha_{\Delta}^T(h) | \det \text{ad}_{b_0/b_0}(h) | \tilde{\Theta}_{F(h),\Gamma}(h) = c_T p(h)
\]

for all \(p \in S(\mathfrak{h}^*)^{\varepsilon I} \) and \(h \in \mathfrak{h}_0^{\text{reg}} \).

Proof. The first assertion follows from Corollary 2.5.

Theorem 2.4. Let \(p \in S(\mathfrak{h}^*)^{\varepsilon I} \). There exists a bijective map

\[
\rho : \mathcal{D}(g)^G.T_{p,\Gamma} \rightarrow \mathcal{D}(g)^W.p, \quad \rho(D.T_{p,\Gamma}) = \delta(D).p
\]

which, through \(\delta \), yields an isomorphism

\[
\rho : A(g).T_{p,\Gamma} \cong \mathcal{D}(g)^W.p.
\]

Proof. We first need to show that \(\rho \) is well defined. Let \(D \in \mathcal{D}(g)^G \); by Theorem 2.2 we have

\[
(\dagger) \quad D.T_{p,\Gamma} = T_{\delta(D),p,\Gamma} = \tilde{\Theta}_{F(h),\delta(D),p,\Gamma}.
\]

Suppose that \(D.T_{p,\Gamma} = 0 \). Then, the analytic function associated to \(T_{\delta(D),p,\Gamma} \in \text{Db}(\mathfrak{g}_0)^{G_0}_{S_u^+} \) vanishes on \(\mathfrak{h}_0^{\text{reg}} \). Notice that, since \(\delta(D) \) is \(W \)-invariant, \(\delta(D).p \in S(\mathfrak{h}^*)^{\varepsilon I} \). Therefore Lemma 2.3 gives \(\delta(D).p = 0 \) on \(\mathfrak{h}_0^{\text{reg}} \). Thus \(\delta(D).p = 0 \) on \(\mathfrak{h} \) and \(\rho \) is well defined.

Now, it follows easily from (\dagger) that \(\rho \) is a linear bijection. Since \(I.T_{p,\Gamma} = 0 \), the last assertion is clear.

Recall that we denote by \(V_\chi \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}^*) \) a simple \(W \)-module in the class of \(\chi \in W^- \).

Corollary 2.5. Let \(p \in S(\mathfrak{h}^*)^{\varepsilon I} \) such that \(CW.p \) is simple. Then there exists \(\chi \in W^- \) such that \(V_\chi^{\varepsilon I} \neq 0 \). We have

1. \(\mathcal{D}(g).T_{p,\Gamma} \cong N_\chi \) and \(\mathcal{D}(g)^G.T_{p,\Gamma} \cong V_\chi \);
2. \(\mathcal{D}(g).\Theta_{F(h),p,\Gamma} \cong M_\chi \) and \(\mathcal{D}(g)^G.\Theta_{F(h),p,\Gamma} \cong (V_\chi)^{F(h)^{-1}} \).

Proof. The first assertion follows from \(\mathcal{H}(\mathfrak{h}^*) \cong CW \). Then, 1 and 2 are consequences of \(V_\chi \cong \mathcal{D}(g)^W.p \), Lemma 1.3 and Theorem 2.4.

Remark 2.6. Let \(\chi \in W^- \) be such that \(V_\chi^{\varepsilon I} \neq 0 \). It follows obviously from the previous corollary that

\[
N_\chi \cong \mathcal{D}(g).T_{p,\Gamma}, \quad M_\chi \cong \mathcal{D}(g).\Theta_{u,\Gamma}
\]

where \(0 \neq p \in V_\chi^{\varepsilon I} \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}^*)^{\varepsilon I} \) and \(u = F(h) \in \mathcal{H}^{b(\chi)}(\mathfrak{h})^{\varepsilon I} \).
3. THE DECOMPOSITION OF $\text{Db}(g_0)^{G_0}_{\mathfrak{sl}_k}$ AND $\text{Db}(g_0)^{G_0}_{\text{mil}}$

Fix a real form g_0 of g and let $[h_1], \ldots, [h_r]$ be the conjugacy classes of Cartan subalgebras in g_0. For each $j = 1, \ldots, r$ we denote by

$$h_{j,C} = h_j \otimes \mathbb{C}, \quad W_j = W(g_0, h_{j,C}), \quad \Delta^+_j, \ \text{a set of positive imaginary roots},$$

$$\varepsilon_{I,j} : W(h_j) = W(g_0, h_j) \to \{ \pm 1 \} \text{ the imaginary signature associated to } h_j.$$

For each j we fix a connected component Γ_j of h_j^{reg}. The results of \cite{2} then apply to $h_0 = h_j, \Gamma = \Gamma_j$ etc.

Remark 3.1. Recall that the h_j, \mathbb{C} are G-conjugate. Therefore, if $1 \leq j, k \leq r$, the algebras $D(h_j, \mathbb{C})^{W_j}$ and $D(h_k, \mathbb{C})^{W_k}$ are naturally isomorphic. Denote this isomorphism by γ_{jk} and let δ_j be the Harish-Chandra isomorphism from $A(g)$ onto $D(h_j, \mathbb{C})^{W_j}$. One can check that $\delta_k = \gamma_{jk} \circ \delta_j$. Therefore, we can choose an “abstract” Cartan subalgebra h and identify δ_j with the homomorphism $\delta : D(g)^{W} \to D(h)^{W}$, where $W = W^\gamma(G, h)$. Then, if $\chi \in W^\gamma$, we have an irreducible W-module $V_{\chi} \subset H^{\beta(\chi)}(h^*)$ and a simple $D(h)^{W}$-module V_{χ}.

For each $\chi \in W^\gamma$, choose a simple W-module $V_{\chi,j} \subset H^{\beta(\chi)}(h_{j,C}^*), \ V_{\chi,j} \cong V_{\chi}$. Write $V_{\chi,j} = V_{\chi,j}^{\varepsilon_{I,j}} \otimes E_{\chi,j}$ with $E_{\chi,j}$ stable under $W(h_j)$. Let \{ $e_{\chi,j}^k$ \}$_{1 \leq k \leq d(\chi)}$ be a basis of $V_{\chi,j}$ such that

$$V_{\chi,j}^{\varepsilon_{I,j}} = \bigoplus_{k=1}^{d(\chi)} \mathbb{C} e_{\chi,j}^k, \quad E_{\chi,j} = \bigoplus_{k=n(\chi)+1}^{d(\chi)} \mathbb{C} e_{\chi,j}^k$$

(hence $n_j(\chi) = \dim V_{\chi,j}^{\varepsilon_{I,j}}$).

Lemma 3.2. The $D(h_j, \mathbb{C})^{W_j}$-module $S(h_j^*, \chi)^{\varepsilon_{I,j}}$ decomposes as

$$S(h_j^*, \chi)^{\varepsilon_{I,j}} = \bigoplus_{\chi \in W^\gamma} \bigoplus_{k=1}^{n_j(\chi)} D(h_j, \mathbb{C})^{W_j} . e_{\chi,j}^k$$

with $D(h_j, \mathbb{C})^{W_j} . e_{\chi,j}^k \cong V_{\chi}^k$.

Proof. Clearly, we can drop the index j and write $h_0 = h_j, \ h = h_{j,C}, \ v^k = e_{\chi,j}^k$ etc. Since $D(h)^{W_j} . e_{\chi}^k \subset S(h^*)^{\varepsilon_{I}}$ for $1 \leq k \leq n(\chi) = \dim V_{\chi}^{\varepsilon_{I}}$, one has

$$S(h^*)^{\varepsilon_{I}} \supset \bigoplus_{\chi \in W^\gamma} \bigoplus_{k=1}^{n(\chi)} D(h)^{W_j} . e_{\chi}^k.$$

Recall from \cite{3} that $S(h^*) = \bigoplus_{\chi} S(h^*)[\chi]$ with $S(h^*)[\chi] = \bigoplus_{k=1}^{d(\chi)} D(h)^{W} . e_{\chi}^k$. Write $S(h^*)[\chi] = E_1 \oplus E_2$, where $E_1 = \bigoplus_{k=1}^{d(\chi)} D(h)^{W} . e_{\chi}^k$ and $E_2 = \bigoplus_{k=n(\chi)+1}^{d(\chi)} D(h)^{W} . e_{\chi}^k$. Notice that E_1, E_2 are stable under $W(h_0)$ and that we have $S(h^*)[\chi]^{\varepsilon_{I}} = E_1 \oplus E_2^{\varepsilon_{I}}$.

We now show that $E_2^{\varepsilon_{I}} = 0$. This will prove that

$$S(h^*)^{\varepsilon_{I}} = \bigoplus_{\chi \in W^\gamma} \bigoplus_{k=1}^{n(\chi)} D(h)^{W} . e_{\chi}^k.$$

Let $D \in D(h)^{W}$ and $v \in V_{\chi}$. Notice first that if $D.v \neq 0$, the operator D yields an isomorphism of W-modules $V_{\chi} \cong D.V_{\chi}$. Therefore, if $V_{\chi} = \bigoplus_k S_k$ with an
S_k irreducible $W(h_0)$-module, we get that $D.V_\chi = \bigoplus_k D.S_k$, $D.S_k \cong S_k$. It follows that if $v \in E_\chi$ (the $W(h_0)$-stable complement of $V_\chi^{e_i}$), then $D.v \in D.E_\chi$ with $D.E_\chi \cap S(h_*^{e_i}) = 0$. Let $p = \sum_{k=n(\chi)+1}^{\Delta(\chi)} D_k v_\chi^k \in E_2$. Then, $CW(h_0).p \subset \sum_{k>n(\chi)} CW(h_0).D_k v_\chi^k$ and, by the previous remarks, $(CW(h_0).D_k v_\chi^k)^{e_i} = 0$. Thus $(CW(h_0).p)^{e_i} = 0$, which shows that $E_2^{e_i} = 0$.

Recall the following result:

Proposition 3.3 ([5 Proposition 6.1.1]). (1) The linear map

$$T : \bigoplus_{j=1}^r S(h_{j(C)}^{e_{i,j}}) \rightarrow Db(g_0)^{Go}_{S_+}, \quad T(p_1, \ldots , p_r) = \sum_{j=1}^r T_{p_j, \Gamma_j}$$

is an isomorphism of vector spaces.

(2) The map T induces an isomorphism:

$$\bigoplus_{j=1}^r H(h_{j(C)}^{e_{i,j}}) \cong \{ T \in Db(g)^{Go}_{S_+} : S_+(g)^G . T = 0 \}.$$

Proof. (2) follows from the proof of [5 Proposition 6.1.1].

Theorem 3.4. Set $T(h_j) = \sum_{p \in S(h_{j(C)}^{e_{i,j}}) \subset \mathbb{C} T_\Gamma_\Gamma}$. Then we have the following decomposition of $D(g)^G$-modules:

$$Db(g_0)^{Go}_{S_+} = \bigoplus_{j=1}^r T(h_j)$$

with

$$T(h_j) = \bigoplus_{\chi \in W} \bigoplus_{k=1}^{n_\chi(\chi)} D(g)^G . T_{\chi(k), \Gamma_j}$$

and $D(g)^G . T_{\chi(k), \Gamma_j} \cong \mathcal{N}_\chi^G$.

Proof. The decomposition of $T(h_j)$, as a $D(g)^G$-module, is consequence of Theorem 3.3. Lemma 3.2 (using the isomorphism $\delta : A(g) \cong D(h_{j(C)}^{W_j})$) and Proposition 3.3. The decomposition of $Db(g_0)^{Go}_{S_+}$ follows from Proposition 3.3.

Using the Fourier transform, we obtain the following:

Corollary 3.5. The $D(g)^G$-module $Db(g_0)^{Go}_{nil}$ decomposes as

$$Db(g_0)^{Go}_{nil} = \bigoplus_{j=1}^r \bigoplus_{\chi \in W} \bigoplus_{k=1}^{n_\chi(\chi)} D(g)^G . \Theta F_{\chi}^{-1}(v_{\chi(k),j}), \Gamma_j \cong \mathcal{N}_\chi^G.$$

The next corollary follows from Theorem 3.4 and Corollary 3.5.

Corollary 3.6. We have

$$Db(g_0)^{Go}_{S_+} \cong \bigoplus_{\chi \in W} m_\chi \mathcal{N}_\chi^G, \quad Db(g_0)^{Go}_{nil} \cong \bigoplus_{\chi \in W} m_\chi \mathcal{N}_\chi^G,$$

where $m_\chi = \sum_{j=1}^r \dim V_\chi^{e_{i,j}}$.

\[\square \]
Remark 3.7. Let $\chi \in W^\omega$. It is not always possible to “realize” the modules N_χ and M_χ as $D(g).T$ for some $T \in Db(g_0)$, where g_0 is a real form of g. By the previous results, this statement is equivalent to the existence of a Cartan subalgebra $h_j \subset g_0$ such that $V^{\chi_{\phi}}_{\phi} \neq 0$. D. Renard has observed that, using the results of W. Rossmann [15], this can be translated to a question about centralizers of nilpotent elements. Fix a real form $g_\mathbb{R}$ of g with adjoint group $G_\mathbb{R}$. If $x \in g_\mathbb{R}$ is nilpotent one defines a subgroup of the component group $A(G.x)$ (see [4] for notation) by

$$A(G_\mathbb{R}.x) = G_\mathbb{R}^x / G_\mathbb{R}^x \cap (G^x)^0.$$

Recall that $\chi \in W^\omega$ can be written $\sigma(O, \psi)$ via the Springer correspondence, where $O \subset g$ is a nilpotent orbit and $\psi : A(O) \to GL(E)$ is an irreducible representation. Then, by [15] Corollary 3.2 & Theorem 3.3, there exists a Cartan subalgebra $H_0 \subset g_\mathbb{R}$ such that $V^{\chi_{\phi}}_{\phi} \neq 0$ if, and only if, there exists a nilpotent element $x \in g_\mathbb{R}$ such that $O = G.x$ and $E^{A(G_\mathbb{R}.x)} \neq 0$.

Let $g = \mathfrak{sp}(\ell, \mathbb{C})$ and let $\phi \in W^\omega$ be the long sign character, i.e. $V_\phi = \mathbb{C}\pi_l$ where π_l is the product of the long roots. Then, see [5] §13.3, $\phi = \sigma(O, \psi)$ where $O = G.x$ is the subgroup of nilpotent orbit with partition $[2\ell - 2, 2]$ and ψ is the non-trivial character of $A(O) \equiv \{ \pm 1 \}$. The real forms of g are $\mathfrak{sp}(\ell, \mathbb{R})$ and the $\mathfrak{sp}(p, q)$, $p+q = \ell$. Assume now that $\ell \geq 3$. By the classification of nilpotent orbits in $\mathfrak{sp}(p, q)$, see [7] Theorem 9.2.5, we know that $O^{\phi} \cap \mathfrak{sp}(p, q) = \emptyset$. Hence, by Rossmann’s results, $V^{\chi_{\phi}}_{\phi} \neq 0$ for each Cartan subalgebra $h_j \subset \mathfrak{sp}(p, q)$. On the other hand, if $G_\mathbb{R}$ is the adjoint group of $\mathfrak{sp}(\ell, \mathbb{R})$, one can show that $A(G_\mathbb{R}.x) = A(G.x)$. Thus, with the above notation, $E^{A(G_\mathbb{R}.x)} = 0$ and it follows that $V^{\chi_{\phi}}_{\phi} = 0$ for each Cartan subalgebra $h_j \subset \mathfrak{sp}(\ell, \mathbb{R})$. For instance, when $g = \mathfrak{sp}(3, \mathbb{R})$ there are six conjugacy classes of Cartan subalgebras and one can directly verify (without using [15]) that $V^{\chi_{\phi}}_{\phi} = 0$ for $j = 1, \ldots, 6$. We thank D. Renard for showing this computation to us.

Let $x \in N(g_0)$ and denote by β_x the Liouville (Kostant-Kirillov) measure on $G_0.x$. By [14] one can define $\Theta_x \in Db(g_0)^{G_0}_{nil}$ by $\langle \Theta_x, f \rangle = \int_{g_0.x} f d\beta_x$ for all $f \in C_c^\infty(g_0)$. Set $O = G.x$. Then, see [9], [10] or [18]; Θ_x is homogeneous of degree $\lambda_\Theta = 1/2 \dim O - \dim g$ and satisfies

$$(3.1) \quad D(g).\Theta_x \cong M_{\chi_\Theta}$$

for some $\chi_\Theta \in W^\omega$ such that $\lambda_\Theta = \nu - n - b(\chi_\Theta)$.

Corollary 3.8. There exists $j \in \{1, \ldots, r\}$ and $u \in F_{h_j}^{-1}(V_{\chi_{\Theta}})^{\chi_{\phi}}$ such that $D(g)^{G_j}.\Theta_x \cong D(g)^{G_j}.\Theta_{u, r_j}$.

Proof. Since $D(g)^{G_j}.\Theta_x \cong M^{G_j}_{\chi_{\Theta}}$ is a simple submodule of $Db(g_0)^{G_0}_{nil}$, the claim follows from Corollary 3.3.

Remark 3.9. It is proved in [11], see also [3], that Θ_x can be written as $\sum_{j=1}^r \Theta_{a_j, r_j}$ with $a_j \in H^{\chi_{\Theta}}(h_j, C)^{\chi_{\phi}}$. It is easily seen that we may assume $CW.a_j \cong V_{\chi_\Theta}$ for all j such that $a_j \neq 0$. W. Rossmann [15] has given conditions to ensure that $\Theta_x = \Theta_{a_j, r_j}$ for some j.

4. Example: the complex case

We assume in this section that \(g_0 = g_1^{\text{triv}} \) is a complex semisimple Lie algebra, \(g_1 \), viewed as a real Lie algebra. Then, \(g \) can be identified with \(g_1 \times g_1 \) and \(g_0 \) with the diagonal \(\{ (a,a) : a \in g_1 \times g_1 \} \). Let \(h_0 \) be a Cartan subalgebra of \(g_1 \). Recall the following well-known facts, see [17] or [18]:

- \(h_0 = \{ (a,a) : a \in h_1 \} \) is a Cartan subalgebra of \(h_0 \) and \(h = h_0 \otimes \mathbb{R} \subseteq h_1 \times h_1 \);
- \(W(g,h) = W_1 \times W_1 \), where \(W_1 = W(g_1,h_1) \), and \(W(h_0) = \{ (w,w) \in W \} \) is isomorphic to \(W_1 \);
- there is a unique conjugacy class \([h_0] \) of Cartan subalgebras and \(h_0' \) is connected;
- the irreducible representations of \(W \) are of the form \(\chi = \phi \otimes \mu, \phi, \mu \in W_1^* \);
- one has \(\phi = \phi^* \) for all \(\phi \in W_1^* \), where \(\phi^* \) is the dual representation.

Observe that \(D(g) = D(g_1) \boxtimes D(g_1) \) and \(D(g)^G = D(g_1)^{G_1} \boxtimes D(g_1)^{G_1} \).

Lemma 4.1. Let \(\chi \in W^* \). Then, the simple \(D(g) \)-module \(M_\chi \) is of the form \(M_{\phi} \boxtimes M_{\mu} \) for some \(\phi, \mu \in W_1^* \).

Proof. The claim follows easily from the definition of the category \(\mathcal{C}(M) \) and the decomposition of the \(W \)-module \(S(h^*) = S(h_1^*) \boxtimes S(h_1^*) \).

Corollary 4.2. [18 Theorem 6.11] We have

\[
\text{Db}(g_0^{G_0})_{\text{nil}} \cong \bigoplus_{\phi \in W_1^*} M_\phi^{G_1} \boxtimes M_\phi^{G_1}
\]

as a \(D(g)^G \)-module.

Proof. Let \(\chi = \phi \otimes \mu \in W^* \). Then, \(V_\chi^{G_1} = (V_\phi \otimes V_\mu)^{W_1} \neq 0 \) if, and only if, \(\phi = \mu \) and therefore \(n(\chi) = 1 \). The assertion now follows from Corollary 3.3.

Recall the following general results from [13]. Since the module \(M_\chi \) is irreducible and \(G \)-equivariant, its support is the closure of a nilpotent orbit \(O = G.x \). Furthermore, if \(i : O \hookrightarrow g \) is the inclusion, \(M_\chi \) is uniquely determined by its \((D,O) \)-module inverse image \(\mathcal{L}_\chi := i^* M_\chi \). The \(D_O \)-module \(\mathcal{L}_\chi \) is an irreducible integrable connection associated to an irreducible representation \(\psi \) of the component group \(A(O) := G^*/(G^*)^0 \) (where \((G^*)^0 \) is the connected component of the centralizer \(G^* \)). Therefore, since \(\chi \) is uniquely determined by \(O \) and \(\psi \), we set \(\chi = \sigma(O, \psi) \).

In our situation, i.e., in the complex case, we have \(O = O_1^j \times O_2^j \) with \(O_1^j \) nilpotent orbits in \(g_1 \) for \(j = 1,2 \). Then, \(\chi = \sigma(O, \psi) = \phi_1 \otimes \phi_2, \mathcal{L}_\chi = L_{\phi_1} \boxtimes L_{\phi_2}, \phi_j = \sigma(O^j, \psi_j), \psi = \psi_1 \otimes \psi_2. \)

Note that \(b(\chi) = b(\phi_1) + b(\phi_2) \) and \(\lambda_O = \lambda_{O^1} + \lambda_{O^2}. \)

Let \(x \in N(g_0) \); set \(x = (x_1, x_1), x_1 \in N(g_1), O_1 = G_1.x_1, O = G.x = O_1 \times O_1. \)

The inclusion \(i : O \hookrightarrow g \) is equal to \(i_1 \times i_1, \) where \(i_1 : O_1 \hookrightarrow g_1 \). By (3.1) and Corollary 4.2 there exist \(\chi \in W^*, \chi_1 \in W_1 \) such that \(\chi = \chi_1 \otimes \chi_2 \) and \(D(g) \cdot \Theta_x \cong M_{\chi_1} \boxtimes M_{\chi_2}. \)

It is known (Harish-Chandra) that \(\Theta_x = \Theta_{u,h_0} \) for some \(u \in S(h_1) \otimes S(h_1). \)

The following result has been proved by various authors; see [2, 3] (when \(O_1 \) is “special”), [3, 9, 16].

Theorem 4.3. One has \(\chi_1 = \sigma(O_1, \text{triv}) \), and there exists \(p \in (V_{\chi_1} \otimes V_{\chi_1})^{W_1} \) such that \(\Theta_x = \Theta_{F_p(p),h_0^p}. \)
Proof. Recall from [9] or [10] that χ = χ1 ⊗ χ1 = σ(𝒪, triv). This means that

\[\mathcal{L}_X = \mathcal{L}_{\chi_1} \otimes \mathcal{L}_{\chi_1} = \mathcal{O}_X = \mathcal{O}_{\chi_1} \otimes \mathcal{O}_{\chi_1} \]

(where we denote by \(\mathcal{O}_X \) the structural sheaf of an algebraic variety \(X \)). This yields \(\mathcal{L}_{\chi_1} = \mathcal{O}_{\chi_1} \) and \(\chi_1 = \sigma(\mathcal{O}_1, \text{triv}) \).

Set \(T_x = \bar{\Theta}_z \); then \(\mathcal{D}(g)T_x = N_x \otimes N_{\chi_1} \) (see Lemma 1.4). Since \(S_+(g^*)G, \Theta_x = 0 \) we have \(S_+(g)G, T_x = 0 \). It follows from Proposition 3.3(2) that we can write \(T_x = T_{p, b_x} \) for some \(p \in (\mathcal{H}(b_x) \otimes \mathcal{H}(b_x))^{W} \) or, equivalently, \(\Theta_x = \bar{\Theta}_{F_p(p), b_x} \). Now, by Theorem 3.4 \(\mathcal{D}(b)^W, p = V_{\chi_1} \otimes V_{\chi_1} \) and therefore \(\mathcal{C}W, p \equiv V_{\chi_1} \otimes V_{\chi_1} \). Moreover, \(T_x = T_{p, b_x} \) is homogeneous of degree \(b(\chi_0) - 2\nu = 2b(\chi_1) - 2\nu = \deg p - 2\nu \). Thus \(\deg p = 2b(\chi_1) \) and, by definition of \(V_{\chi_1}, p \in (V_{\chi_1} \otimes V_{\chi_1})^W \).

\[\square \]

ACKNOWLEDGMENT

This work was partially completed while the author was visiting the Weizmann Institute of Science. He thanks this institution, and A. Joseph, for their hospitality.

References

4. , Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra, 80 (1983), 350-382. MR 84h:22038

Département de Mathématiques, Université de Brest, 29285 Brest, France

E-mail address: Thierry.Levasseur@univ-brest.fr

URL: http://maths2.univ-brest.fr/~levasseur