Invariant distributions supported on the nilpotent cone of a semisimple Lie algebra
HTML articles powered by AMS MathViewer
- by Thierry Levasseur
- Trans. Amer. Math. Soc. 353 (2001), 4189-4202
- DOI: https://doi.org/10.1090/S0002-9947-01-02851-3
- Published electronically: June 1, 2001
- PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be a semisimple complex Lie algebra with adjoint group $G$ and $\mathcal {D}(\mathfrak {g})$ be the algebra of differential operators with polynomial coefficients on $\mathfrak {g}$. If $\mathfrak {g}_0$ is a real form of $\mathfrak {g}$, we give the decomposition of the semisimple $\mathcal {D}(\mathfrak {g})^G$-module of invariant distributions on $\mathfrak {g}_0$ supported on the nilpotent cone.References
- James Arthur, The $L^2$-Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257–290. MR 1001841, DOI 10.1007/BF01389042
- Dan Barbasch and David A. Vogan Jr., The local structure of characters, J. Functional Analysis 37 (1980), no. 1, 27–55. MR 576644, DOI 10.1016/0022-1236(80)90026-9
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), no. 2, 153–199. MR 656661, DOI 10.1007/BF01457308
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), no. 2, 350–382. MR 691809, DOI 10.1016/0021-8693(83)90006-6
- Abderrazak Bouaziz, Intégrales orbitales sur les algèbres de Lie réductives, Invent. Math. 115 (1994), no. 1, 163–207 (French). MR 1248081, DOI 10.1007/BF01231757
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Victor Ginsburg, Intégrales sur les orbites nilpotentes et représentations des groupes de Weyl, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 5, 249–252 (French, with English summary). MR 693785
- R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, DOI 10.1007/BF01388568
- T. Levasseur, Equivariant $\mathrm {D}$-modules attached to nilpotent orbits in a semisimple Lie algebra, to appear in Transformation Groups, (1998).
- T. Levasseur and J. T. Stafford, Invariant differential operators on the tangent space of some symmetric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1711–1741. MR 1738064
- T. Levasseur and J. T. Stafford, The kernel of an homomorphism of Harish-Chandra, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 3, 385–397. MR 1386924
- T. Levasseur and J. T. Stafford, Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math. 119 (1997), no. 5, 1095–1117. MR 1473070
- R. Rao, Orbital integrals on reductive groups, Ann. Math., 96 (1972), 505-510.
- W. Rossmann, Nilpotent orbital integrals in a real semisimple Lie algebra and representations of Weyl groups, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 263–287. MR 1103593
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6
- V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin-New York, 1977. MR 0473111
- Nolan R. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc. 6 (1993), no. 4, 779–816. MR 1212243, DOI 10.1090/S0894-0347-1993-1212243-2
Bibliographic Information
- Thierry Levasseur
- Affiliation: Département de Mathématiques, Université de Brest, 29285 Brest, France
- Email: Thierry.Levasseur@univ-brest.fr
- Received by editor(s): November 17, 1998
- Published electronically: June 1, 2001
- Additional Notes: Research partially supported by EC TMR network “Algebraic Lie Representations”, Grant No. ERB FMRX-CT97-0100
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4189-4202
- MSC (1991): Primary 14L30, 16S32, 17B20, 22E46
- DOI: https://doi.org/10.1090/S0002-9947-01-02851-3
- MathSciNet review: 1837227