Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Stochastic processes with sample paths in reproducing kernel Hilbert spaces
HTML articles powered by AMS MathViewer

by Milan N. Lukić and Jay H. Beder PDF
Trans. Amer. Math. Soc. 353 (2001), 3945-3969 Request permission

Abstract:

A theorem of M. F. Driscoll says that, under certain restrictions, the probability that a given Gaussian process has its sample paths almost surely in a given reproducing kernel Hilbert space (RKHS) is either $0$ or $1$. Driscoll also found a necessary and sufficient condition for that probability to be $1$.

Doing away with Driscoll’s restrictions, R. Fortet generalized his condition and named it nuclear dominance. He stated a theorem claiming nuclear dominance to be necessary and sufficient for the existence of a process (not necessarily Gaussian) having its sample paths in a given RKHS. This theorem – specifically the necessity of the condition – turns out to be incorrect, as we will show via counterexamples. On the other hand, a weaker sufficient condition is available.

Using Fortet’s tools along with some new ones, we correct Fortet’s theorem and then find the generalization of Driscoll’s result. The key idea is that of a random element in a RKHS whose values are sample paths of a stochastic process. As in Fortet’s work, we make almost no assumptions about the reproducing kernels we use, and we demonstrate the extent to which one may dispense with the Gaussian assumption.

References
  • P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
  • Michael F. Driscoll, Estimation of the mean value function of a Gaussian process, Ph.D. thesis, University of Arizona, 1971.
  • Michael F. Driscoll, The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 309–316. MR 370723, DOI 10.1007/BF00534894
  • Michael F. Driscoll, The signal-noise problem—a solution for the case that signal and noise are Gaussian and independent, J. Appl. Probability 12 (1975), 183–187. MR 365970, DOI 10.1017/s0021900200033295
  • R. Fortet, Espaces à noyau reproduisant et lois de probabilités des fonctions aléatoires, Ann. Inst. H. Poincaré Sect. B (N.S.) 9 (1973), 41–58 (French). MR 0345193
  • Robert Fortet, Espaces à noyau reproduisant et lois de probabilité de fonctions aléatoires, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1439–1440 (French). MR 370724
  • Robert M. Fortet, Espaces à noyau reproduisant et lois de probabilités des fonctions aléatoires, unpublished notes on [Espaces à noyau reproduisant et lois de probabilités des fonctions aléatoires, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, A 278 (1974), 1439–1440], 1974.
  • G. Kallianpur, The role of reproducing kernel Hilbert spaces in the study of Gaussian processes, Advances in Probability and Related Topics, Vol. 2, Dekker, New York, 1970, pp. 49–83. MR 0283866
  • G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199–211. MR 266293, DOI 10.1090/S0002-9947-1970-0266293-4
  • Raoul Le Page, Subgroups of paths and reproducing kernels, Ann. Probability 1 (1973), 345–347. MR 350835, DOI 10.1214/aop/1176996990
  • M. Loève, Fonctions aléatoires du second ordre, Supplement to P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948.
  • Eugene Lukacs, Stochastic convergence, 2nd ed., Probability and Mathematical Statistics, Vol. 30, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0375405
  • Milan N. Lukić, Stochastic processes having sample paths in reproducing kernel Hilbert spaces with an application to white noise analysis, Ph.D. thesis, University of Wisconsin, Milwaukee, 1996.
  • Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
  • Jacques Neveu, Processus aléatoires gaussiens, Séminaire de Mathématiques Supérieures, No. 34 (Été, vol. 1968, Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). MR 0272042
  • N. N. Vakhaniya, V. I. Tarieladze i S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, Moscow, 1985, English translation [N. N. Vakhaniya, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, Riedel, Dordrecht, Holland, 1987, translated by W. A. Woyczynski].
  • Emanuel Parzen, Statistical inference on time series by Hilbert space methods I, Tech. Report 23, Statistics Department, Stanford University, 1959, reprinted in [Time Series Analysis Papers, Holden-Day, San Francisco, 1967], Chapter 13.
  • Emanuel Parzen, Probability density functionals and reproducing kernel Hilbert spaces. , Proc. Sympos. Time Series Analysis (Brown Univ., 1962) Wiley, New York, 1963, pp. 155–169. MR 0149634
  • Emanuel Parzen, On empirical multiple time series analysis, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 305–340. MR 0217980
  • V. Piterbarg, Review 1b168 of [Espaces à noyau reproduisant et lois de probabilités des fonctions aléatoires, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, A 278 (1974), 1439–1440], Referativnyi Zhurnal Matematika 1–2 (1975), 25 (Russian), Izdatelstvo Akademii Nauk SSSR.
  • Michel Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), no. 1-2, 99–149. MR 906527, DOI 10.1007/BF02392556
  • N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions on Banach spaces, Mathematics and its Applications (Soviet Series), vol. 14, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian and with a preface by Wojbor A. Woyczynski. MR 1435288, DOI 10.1007/978-94-009-3873-1
  • N. N. Vahanija and V. I. Tarieladze, Covariance operators of probability measures in locally convex spaces, Teor. Verojatnost. i Primenen. 23 (1978), no. 1, 3–26 (Russian, with English summary). MR 0517336
Similar Articles
Additional Information
  • Milan N. Lukić
  • Affiliation: Department of Mathematics, Viterbo University, 815 South 9th Street, La Crosse, Wisconsin 54601
  • Email: mnlukic@viterbo.edu
  • Jay H. Beder
  • Affiliation: Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201-0413
  • Email: beder@uwm.edu
  • Received by editor(s): March 10, 2000
  • Received by editor(s) in revised form: February 8, 2001
  • Published electronically: May 14, 2001
  • © Copyright 2001 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 353 (2001), 3945-3969
  • MSC (2000): Primary 60G12; Secondary 60B11, 60G15, 28C20, 46E22, 47B32
  • DOI: https://doi.org/10.1090/S0002-9947-01-02852-5
  • MathSciNet review: 1837215