Products of polynomials in uniform norms
HTML articles powered by AMS MathViewer
- by Igor E. Pritsker
- Trans. Amer. Math. Soc. 353 (2001), 3971-3993
- DOI: https://doi.org/10.1090/S0002-9947-01-02856-2
- Published electronically: May 21, 2001
- PDF | Request permission
Abstract:
We study inequalities connecting a product of uniform norms of polynomials with the norm of their product. This subject includes the well known Gel’fond-Mahler inequalities for the unit disk and Kneser inequality for the segment $[-1,1]$. Using tools of complex analysis and potential theory, we prove a sharp inequality for norms of products of algebraic polynomials over an arbitrary compact set of positive logarithmic capacity in the complex plane. The above classical results are contained in our theorem as special cases. It is shown that the asymptotically extremal sequences of polynomials, for which this inequality becomes an asymptotic equality, are characterized by their asymptotically uniform zero distributions. We also relate asymptotically extremal polynomials to the classical polynomials with asymptotically minimal norms.References
- G. Aumann, Satz über das Verhalten von Polynomen auf Kontinuen, Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. (1933), 926-931.
- V. Avanissian and M. Mignotte, A variant of an inequality of Gel′fond and Mahler, Bull. London Math. Soc. 26 (1994), no. 1, 64–68. MR 1246473, DOI 10.1112/blms/26.1.64
- B. Beauzamy, E. Bombieri, P. Enflo and H. L. Montgomery, Products of polynomials in many variables, J. Number Theory 36 (1990), 219-245.
- Bernard Beauzamy, Enrico Bombieri, Per Enflo, and Hugh L. Montgomery, Products of polynomials in many variables, J. Number Theory 36 (1990), no. 2, 219–245. MR 1072467, DOI 10.1016/0022-314X(90)90075-3
- Carlos Benítez, Yannis Sarantopoulos, and Andrew Tonge, Lower bounds for norms of products of polynomials, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 3, 395–408. MR 1636556, DOI 10.1017/S030500419800259X
- H.-P. Blatt, E. B. Saff, and M. Simkani, Jentzsch-Szegő type theorems for the zeros of best approximants, J. London Math. Soc. (2) 38 (1988), no. 2, 307–316. MR 966302, DOI 10.1112/jlms/s2-38.2.307
- Peter B. Borwein, Exact inequalities for the norms of factors of polynomials, Canad. J. Math. 46 (1994), no. 4, 687–698. MR 1289054, DOI 10.4153/CJM-1994-038-8
- David W. Boyd, Two sharp inequalities for the norm of a factor of a polynomial, Mathematika 39 (1992), no. 2, 341–349. MR 1203290, DOI 10.1112/S0025579300015072
- David W. Boyd, Sharp inequalities for the product of polynomials, Bull. London Math. Soc. 26 (1994), no. 5, 449–454. MR 1308361, DOI 10.1112/blms/26.5.449
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- G. Faber, Über Tschebyscheffsche Polynome, J. Reine Angew. Math. 150 (1920), 79-106.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- A. O. Gel′fond, Transcendental and algebraic numbers, Dover Publications, Inc., New York, 1960. Translated from the first Russian edition by Leo F. Boron. MR 0111736
- R. Grothmann, On the zeros of sequences of polynomials, J. Approx. Theory 61 (1990), no. 3, 351–359. MR 1054544, DOI 10.1016/0021-9045(90)90012-F
- H. Kneser, Das Maximum des Produkts zweies Polynome, Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. (1934), 429-431.
- András Kroó and Igor E. Pritsker, A sharp version of Mahler’s inequality for products of polynomials, Bull. London Math. Soc. 31 (1999), no. 3, 269–278. MR 1673406, DOI 10.1112/S0024609398005670
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027
- K. Mahler, An application of Jensen’s formula to polynomials, Mathematika 7 (1960), 98–100. MR 124467, DOI 10.1112/S0025579300001637
- K. Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), 341–344. MR 138593, DOI 10.1112/jlms/s1-37.1.341
- H. N. Mhaskar and E. B. Saff, The distribution of zeros of asymptotically extremal polynomials, J. Approx. Theory 65 (1991), no. 3, 279–300. MR 1109409, DOI 10.1016/0021-9045(91)90093-P
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778, DOI 10.1007/978-3-662-03329-6
- Herbert Stahl and Vilmos Totik, General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR 1163828, DOI 10.1017/CBO9780511759420
- Howard Levi, On the values assumed by polynomials, Bull. Amer. Math. Soc. 45 (1939), 570–575. MR 54, DOI 10.1090/S0002-9904-1939-07038-9
- Harold Widom, Polynomials associated with measures in the complex plane, J. Math. Mech. 16 (1967), 997–1013. MR 0209448
- Harold Widom, Extremal polynomials associated with a system of curves in the complex plane, Advances in Math. 3 (1969), 127–232. MR 239059, DOI 10.1016/0001-8708(69)90005-X
Bibliographic Information
- Igor E. Pritsker
- Affiliation: Department of Mathematics, 401 Mathematical Sciences, Oklahoma State University, Stillwater, Oklahoma 74078-1058
- MR Author ID: 319712
- Email: igor@math.okstate.edu
- Received by editor(s): December 27, 1997
- Published electronically: May 21, 2001
- Additional Notes: Research supported in part by the National Science Foundation grants DMS-9996410 and DMS-9707359.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3971-3993
- MSC (1991): Primary 30C10, 11C08, 30C15; Secondary 31A05, 31A15
- DOI: https://doi.org/10.1090/S0002-9947-01-02856-2
- MathSciNet review: 1837216