The Bott–Borel–Weil Theorem for direct limit groups
HTML articles powered by AMS MathViewer
- by Loki Natarajan, Enriqueta Rodríguez-Carrington and Joseph A. Wolf
- Trans. Amer. Math. Soc. 353 (2001), 4583-4622
- DOI: https://doi.org/10.1090/S0002-9947-01-02452-7
- Published electronically: July 3, 2001
- PDF | Request permission
Abstract:
We show how highest weight representations of certain infinite dimensional Lie groups can be realized on cohomology spaces of holomorphic vector bundles. This extends the classical Bott–Borel–Weil Theorem for finite–dimensional compact and complex Lie groups. Our approach is geometric in nature, in the spirit of Bott’s original generalization of the Borel–Weil Theorem. The groups for which we prove this theorem are strict direct limits of compact Lie groups, or their complexifications. We previously proved that such groups have an analytic structure. Our result applies to most of the familiar examples of direct limits of classical groups. We also introduce new examples involving iterated embeddings of the classical groups and see exactly how our results hold in those cases. One of the technical problems here is that, in general, the limit Lie algebras will have root systems but need not have root spaces, so we need to develop machinery to handle this somewhat delicate situation.References
- Yuri Bahturin and Georgia Benkart, Highest weight modules for locally finite Lie algebras, Modular interfaces (Riverside, CA, 1995) AMS/IP Stud. Adv. Math., vol. 4, Amer. Math. Soc., Providence, RI, 1997, pp. 1–31. MR 1483900, DOI 10.1090/amsip/004/01
- Yu. A. Bakhturin and Kh. Shtrade, Locally finite-dimensional simple Lie algebras, Mat. Sb. 185 (1994), no. 2, 3–32 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 81 (1995), no. 1, 137–161. MR 1264772, DOI 10.1070/SM1995v081n01ABEH003618
- Y. Bahturin and H. Strade, Some examples of locally finite simple Lie algebras, Arch. Math. (Basel) 65 (1995), no. 1, 23–26. MR 1336218, DOI 10.1007/BF01196574
- A. A. Baranov, Simple diagonal locally finite Lie algebras, Proc. London Math. Soc. (3) 77 (1998), no. 2, 362–386. MR 1635153, DOI 10.1112/S0024611598000495
- A. A. Baranov and A. G. Zhilinskii, Diagonal direct limits of simple Lie algebras, Comm. Algebra 27 (1999), no. 6, 2749–2766. MR 1687305, DOI 10.1080/00927879908826590
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- O. M. Gavrilik and A. U. Klimyk, Matrix elements of irreducible representations of the group $\textrm {U}(n,\,1)$, Dokl. Akad. Nauk Ukrain. SSR Ser. A 6 (1978), 486–490, 572 (Russian, with English summary). MR 504022
- Robert P. Boyer, Characters and factor representations of the infinite-dimensional classical groups, J. Operator Theory 28 (1992), no. 2, 281–307. MR 1273047
- Robert P. Boyer, Representation theory of infinite-dimensional unitary groups, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 381–391. MR 1216198, DOI 10.1090/conm/145/1216198
- Dimitrov, I, Private communications, May and June 1999.
- I. Dimitrov and I. Penkov, Partially integrable highest weight modules, Transform. Groups 3 (1998), no. 3, 241–253. MR 1640667, DOI 10.1007/BF01236874
- Ivan Dimitrov and Ivan Penkov, Weight modules of direct limit Lie algebras, Internat. Math. Res. Notices 5 (1999), 223–249. MR 1675979, DOI 10.1155/S1073792899000124
- Dimitrov, I., Penkov, I. & J. A. Wolf, A Bott–Borel–Weil theory for direct limits of algebraic groups, to appear.
- Katsuya Eda, Takemitsu Kiyosawa, and Haruto Ohta, $N$-compactness and its applications, Topics in general topology, North-Holland Math. Library, vol. 41, North-Holland, Amsterdam, 1989, pp. 459–521. MR 1053203, DOI 10.1016/S0924-6509(08)70158-2
- I. M. Gel′fand and M. I. Graev, Principal representations of the group $\textrm {U}(\infty )$, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., vol. 7, Gordon and Breach, New York, 1990, pp. 119–153. MR 1104275
- Glöckner, H., Private communications.
- Habib, A., Direct limits of Zuckerman derived functor modules, Doctoral Dissertation, University of California, Berkeley, 1997. Journal publication to appear.
- Robin Hartshorne, On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 5–99. MR 432647
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Shizuo Kakutani and Victor Klee, The finite topology of a linear space, Arch. Math. (Basel) 14 (1963), 55–58. MR 151816, DOI 10.1007/BF01234921
- A. A. Kirillov, Representations of the infinite-dimensional unitary group, Dokl. Akad. Nauk SSSR 212 (1973), 288–290 (Russian). MR 0340487
- Loki Natarajan, Unitary highest weight-modules of inductive limit Lie algebras and groups, J. Algebra 167 (1994), no. 1, 9–28. MR 1282814, DOI 10.1006/jabr.1994.1173
- Loki Natarajan, Enriqueta Rodríguez-Carrington, and Joseph A. Wolf, Differentiable structure for direct limit groups, Lett. Math. Phys. 23 (1991), no. 2, 99–109. MR 1148500, DOI 10.1007/BF00703721
- Loki Natarajan, Enriqueta Rodríguez-Carrington, and Joseph A. Wolf, Locally convex Lie groups, Nova J. Algebra Geom. 2 (1993), no. 1, 59–87. MR 1254153
- Loki Natarajan, Enriqueta Rodríguez-Carrington, and Joseph A. Wolf, New classes of infinite-dimensional Lie groups, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 377–392. MR 1278741, DOI 10.1090/pspum/056.2/1278741
- Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Mathematical Society Monographs. New Series, vol. 16, The Clarendon Press, Oxford University Press, New York, 1996. Translated from the Russian by G. G. Gould; Oxford Science Publications. MR 1418863
- G. I. Ol′shanskiĭ, Unitary representations of the group $\textrm {SO}_0(\infty ,\infty )$ as limits of unitary representations of the groups $\textrm {SO}_0(n,\infty )$ as $n\to \infty$, Funktsional. Anal. i Prilozhen. 20 (1986), no. 4, 46–57, 96 (Russian). MR 878044
- G. I. Ol′shanskiĭ, Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians, Topics in representation theory, Adv. Soviet Math., vol. 2, Amer. Math. Soc., Providence, RI, 1991, pp. 1–66. MR 1104937, DOI 10.1007/978-94-011-3618-1_{1}
- Doug Pickrell, The separable representations of $\textrm {U}(H)$, Proc. Amer. Math. Soc. 102 (1988), no. 2, 416–420. MR 921009, DOI 10.1090/S0002-9939-1988-0921009-X
- Rodríguez–Carrington, E. and Wolf, J. A., Infinite Weyl groups, to appear.
- Şerban Strătilă and Dan Voiculescu, Representations of AF-algebras and of the group $U(\infty )$, Lecture Notes in Mathematics, Vol. 486, Springer-Verlag, Berlin-New York, 1975. MR 0458188
- I. A. Yanson and D. V. Zhdanovich, The sets of the direct limits of Lie algebras of the type $A$, Comm. Algebra 24 (1996), no. 3, 1125–1156. MR 1374661, DOI 10.1080/00927879608825627
- Zhdanovich, D. V., Doctoral Dissertation, Moscow State University, 1996.
Bibliographic Information
- Loki Natarajan
- Affiliation: Department of Mathematics 0112, University of California at San Diego, La Jolla, California 92093
- Email: loki@euclid.ucsd.edu
- Enriqueta Rodríguez-Carrington
- Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854
- Email: carringt@math.rutgers.edu
- Joseph A. Wolf
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720–3840
- MR Author ID: 184070
- Email: jawolf@math.berkeley.edu
- Received by editor(s): May 6, 1997
- Received by editor(s) in revised form: July 6, 1998, and April 26, 2000
- Published electronically: July 3, 2001
- Additional Notes: LN: research partially supported by NSF Grant DMS 92 08303.
ERC: research partially supported by PSF–CUNY Grant 6–66386.
JAW: research partially supported by NSF Grants DMS 93 21285 and DMS 97 05709. - © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4583-4622
- MSC (1991): Primary 222E30, 22E65; Secondary 22C05, 32C10, 46G20, 22E70
- DOI: https://doi.org/10.1090/S0002-9947-01-02452-7
- MathSciNet review: 1650034