Spherical classes and the Lambda algebra
HTML articles powered by AMS MathViewer
- by Nguyễn H. V. Hưng
- Trans. Amer. Math. Soc. 353 (2001), 4447-4460
- DOI: https://doi.org/10.1090/S0002-9947-01-02766-0
- Published electronically: May 22, 2001
- PDF | Request permission
Abstract:
Let $\Gamma ^{\wedge }= \bigoplus _k \Gamma _k^{\wedge }$ be Singer’s invariant-theoretic model of the dual of the lambda algebra with $H_k(\Gamma ^{\wedge })\cong \operatorname {Tor}_k^{\mathcal {A}}(\mathbb {F}_2, \mathbb {F}_2)$, where $\mathcal {A}$ denotes the mod 2 Steenrod algebra. We prove that the inclusion of the Dickson algebra, $D_k$, into $\Gamma _k^{\wedge }$ is a chain-level representation of the Lannes–Zarati dual homomorphism \[ \varphi _k^*: \mathbb {F}_2 \underset {\mathcal {A}}{\otimes } D_k \to \operatorname {Tor}^{\mathcal {A}}_k(\mathbb {F}_2, \mathbb {F}_2) \cong H_k(\Gamma ^{\wedge }) . \] The Lannes–Zarati homomorphisms themselves, $\varphi _k$, correspond to an associated graded of the Hurewicz map \[ H:\pi _*^s(S^0)\cong \pi _*(Q_0S^0)\to H_*(Q_0S^0) . \] Based on this result, we discuss some algebraic versions of the classical conjecture on spherical classes, which states that Only Hopf invariant one and Kervaire invariant one classes are detected by the Hurewicz homomorphism. One of these algebraic conjectures predicts that every Dickson element, i.e. element in $D_k$, of positive degree represents the homology class $0$ in $\operatorname {Tor}^{\mathcal {A}}_k(\mathbb {F}_2,\mathbb {F}_2)$ for $k>2$. We also show that $\varphi _k^*$ factors through $\mathbb {F}_2\underset {\mathcal {A}}{\otimes } Ker\partial _k$, where $\partial _k : \Gamma ^{\wedge }_k \to \Gamma ^{\wedge }_{k-1}$ denotes the differential of $\Gamma ^{\wedge }$. Therefore, the problem of determining $\mathbb {F}_2 \underset {\mathcal {A}}{\otimes } Ker\partial _k$ should be of interest.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147
- J. F. Adams, Operations of the $n$th kind in $K$-theory, and what we don’t know about $RP^{\infty }$, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp. 1–9. MR 0339178
- A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The $\textrm {mod}-p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331–342. MR 199862, DOI 10.1016/0040-9383(66)90024-3
- William Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157–186. MR 251736, DOI 10.2307/1970686
- Edward B. Curtis, The Dyer-Lashof algebra and the $\Lambda$-algebra, Illinois J. Math. 19 (1975), 231–246. MR 377885
- L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75–98.
- Paul G. Goerss, Unstable projectives and stable $\textrm {Ext}$: with applications, Proc. London Math. Soc. (3) 53 (1986), no. 3, 539–561. MR 868458, DOI 10.1112/plms/s3-53.3.539
- Nguyễn H. V. Hu’ng, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3893–3910. MR 1433119, DOI 10.1090/S0002-9947-97-01991-0
- N. H. V. Hu’ng, Spherical classes and the homology of the Steenrod algebra, Vietnam Jour. Math. 26 (1998), 373–377.
- Nguyễn H. V. Hu’ng, The weak conjecture on spherical classes, Math. Z. 231 (1999), no. 4, 727–743. MR 1709493, DOI 10.1007/PL00004750
- Nguyễn H. V. Hu’ng and Franklin P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 2, 253–264. MR 1631123, DOI 10.1017/S0305004198002667
- J. Lannes, Sur le $n$-dual du $n$-ème spectre de Brown-Gitler, Math. Z. 199 (1988), no. 1, 29–42 (French). MR 954749, DOI 10.1007/BF01160207
- Jean Lannes and Saïd Zarati, Invariants de Hopf d’ordre supérieur et suite spectrale d’Adams, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 15, 695–698 (French, with English summary). MR 705694
- Jean Lannes and Saïd Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194 (1987), no. 1, 25–59 (French). MR 871217, DOI 10.1007/BF01168004
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- Ib Madsen, On the action of the Dyer-Lashof algebra in $H_{\ast }(G)$, Pacific J. Math. 60 (1975), no. 1, 235–275. MR 388392
- Huỳnh Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 3, 319–369. MR 422451
- Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR 265437, DOI 10.1090/S0002-9947-1970-0265437-8
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- William M. Singer, Invariant theory and the lambda algebra, Trans. Amer. Math. Soc. 280 (1983), no. 2, 673–693. MR 716844, DOI 10.1090/S0002-9947-1983-0716844-7
- William M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493–523. MR 1022818, DOI 10.1007/BF01221587
- Victor Snaith and Jørgen Tornehave, On $\pi ^{\textrm {S}}_\ast (B\textrm {O})$ and the Arf invariant of framed manifolds, Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R.I., 1982, pp. 299–313. MR 676338
- Robert J. Wellington, The unstable Adams spectral sequence for free iterated loop spaces, Mem. Amer. Math. Soc. 36 (1982), no. 258, viii+225. MR 646741, DOI 10.1090/memo/0258
- Clarence Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology 16 (1977), no. 3, 227–237. MR 442932, DOI 10.1016/0040-9383(77)90003-9
Bibliographic Information
- Nguyễn H. V. Hưng
- Affiliation: Department of Mathematics, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Hanoi, Vietnam
- Email: nhvhung@hotmail.com
- Received by editor(s): February 4, 1999
- Received by editor(s) in revised form: November 4, 1999
- Published electronically: May 22, 2001
- Additional Notes: The research was supported in part by the National Research Project, No. 1.4.2.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4447-4460
- MSC (2000): Primary 55P47, 55Q45, 55S10, 55T15
- DOI: https://doi.org/10.1090/S0002-9947-01-02766-0
- MathSciNet review: 1851178