Embeddings of $\mathrm {DI}_2$ in $\mathrm {F}_4$
HTML articles powered by AMS MathViewer
- by Carles Broto and Jesper M. Møller
- Trans. Amer. Math. Soc. 353 (2001), 4461-4479
- DOI: https://doi.org/10.1090/S0002-9947-01-02781-7
- Published electronically: May 3, 2001
- PDF | Request permission
Abstract:
We show that there is only one embedding of $\mathrm B\mathrm {DI}_2$ in $\mathrm B\mathrm {F}_4$ at the prime $p=3$, up to self-maps of $\mathrm B\mathrm {DI}_2$. We also describe the effect of the group of self-equivalences of $\mathrm B\mathrm {F}_4$ at the prime $p=3$ on this embedding and then show that the Friedlander exceptional isogeny composed with a suitable Adams map is an involution of $\mathrm B\mathrm {F}_4$ whose homotopy fixed point set coincide with $\mathrm B\mathrm {DI}_2$References
- J. F. Adams and Z. Mahmud, Maps between classifying spaces, Inv. Math. 35 (1976), 1–41. MR 0423352, DOI 10.1007/BF01390132
- J. F. Adams and C. W. Wilkerson, Finite $H$-spaces and algebras over the Steenrod algebra, Ann. of Math. (2) 111 (1980), no. 1, 95–143. MR 558398, DOI 10.2307/1971218
- J. Aguadé, Constructing modular classifying spaces, Israel J. Math. 66 (1989), no. 1-3, 23–40. MR 1017153, DOI 10.1007/BF02765884
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- Marc Aubry, Homotopy theory and models, DMV Seminar, vol. 24, Birkhäuser Verlag, Basel, 1995. Based on lectures held at a DMV seminar in Blaubeuren by H. J. Baues, S. Halperin and J.-M. Lemaire. MR 1347447, DOI 10.1007/978-3-0348-9086-1
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR 682756
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Allan Clark and John Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425–434. MR 367979
- George E. Cooke and Larry Smith, On realizing modules over the Steenrod algebra, J. Pure Appl. Algebra 13 (1978), no. 1, 71–100. MR 508733, DOI 10.1016/0022-4049(78)90045-2
- L.E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75–98.
- W. G. Dwyer and D. M. Kan, Centric maps and realization of diagrams in the homotopy category, Proc. Amer. Math. Soc. 114 (1992), no. 2, 575–584. MR 1070515, DOI 10.1090/S0002-9939-1992-1070515-X
- W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442. MR 1274096, DOI 10.2307/2946585
- W. G. Dwyer and C. W. Wilkerson, The center of a $p$-compact group, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 119–157. MR 1320990, DOI 10.1090/conm/181/02032
- Eric M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math. (2) 101 (1975), 510–520. MR 391078, DOI 10.2307/1970938
- John R. Harper, The $\textrm {mod}\ 3$ homotopy type of $F_{4}$, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Lecture Notes in Math., Vol. 418, Springer, Berlin, 1974, pp. 58–67. MR 0365558
- John R. Harper, $H$-spaces with torsion, Mem. Amer. Math. Soc. 22 (1979), no. 223, viii+72. MR 546361, DOI 10.1090/memo/0223
- Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
- Stefan Jackowski, James McClure, and Bob Oliver, Maps between classifying spaces revisited, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 263–298. MR 1320996, DOI 10.1090/conm/181/02038
- Stefan Jackowski, James McClure, and Bob Oliver, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995), no. 2, 99–126. MR 1341725
- Stefan Jackowski and James E. McClure, Homotopy approximations for classifying spaces of compact Lie groups, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 221–234. MR 1000379, DOI 10.1007/BFb0085230
- Mamoru Mimura and Hirosi Toda, Cohomology operations and homotopy of compact Lie groups. I, Topology 9 (1970), 317–336. MR 266237, DOI 10.1016/0040-9383(70)90056-X
- J.M. Møller, $N$-determined $p$-compact groups, to appear in Fund. Math.
- Jesper Michael Møller, Rational isomorphisms of $p$-compact groups, Topology 35 (1996), no. 1, 201–225. MR 1367281, DOI 10.1016/0040-9383(94)00005-0
- —, Toric morphisms of $p$-compact groups, Preprint, November 1997, to appear in the Proceedings of the 1998 Barcelona Conference on Algebraic Topology.
- J. M. Møller and D. Notbohm, Centers and finite coverings of finite loop spaces, J. Reine Angew. Math. 456 (1994), 99–133. MR 1301453
- Jean-Pierre Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin-New York, 1973. Cours au Collège de France, Paris, 1962–1963; Avec des textes inédits de J. Tate et de Jean-Louis Verdier; Quatrième édition. MR 0404227
- Jolanta Słomińska, Homotopy colimits on E-I-categories, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 273–294. MR 1133907, DOI 10.1007/BFb0084752
- Larry Smith and R. M. Switzer, Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), no. 2, 303–313. MR 712642, DOI 10.1090/S0002-9939-1983-0712642-4
- Larry Smith, The cohomology of stable two stage Postnikov systems, Illinois J. Math. 11 (1967), 310–329. MR 208597
- Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644
- Norman Steenrod, Polynomial algebras over the algebra of cohomology operations, $H$-Spaces (Actes Réunion Neuchâtel, 1970) Lecture Notes in Math., Vol. 196, Springer, Berlin, 1971, pp. 85–99. MR 0286100
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Clarence Wilkerson, Some polynomial algebras over the Steenrod algebra $A_{p}$, Bull. Amer. Math. Soc. 79 (1973), 1274–1276 (1974). MR 339175, DOI 10.1090/S0002-9904-1973-13413-5
- Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434. MR 711066, DOI 10.1090/conm/019/711066
- Clarence W. Wilkerson, Integral closure of unstable Steenrod algebra actions, J. Pure Appl. Algebra 13 (1978), no. 1, 49–55. MR 515560, DOI 10.1016/0022-4049(78)90042-7
- Zdzisław Wojtkowiak, On maps from $\textrm {ho}\varinjlim F$ to $\textbf {Z}$, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 227–236. MR 928836, DOI 10.1007/BFb0083013
- A. Zabrodsky, On the realization of invariant subgroups of $\pi _\ast (X)$, Trans. Amer. Math. Soc. 285 (1984), no. 2, 467–496. MR 752487, DOI 10.1090/S0002-9947-1984-0752487-8
Bibliographic Information
- Carles Broto
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- MR Author ID: 42005
- Email: broto@mat.uab.es
- Jesper M. Møller
- Affiliation: Matematisk Institut, Universitetsparken 5, DK-2100 København Ø
- ORCID: 0000-0003-4053-2418
- Email: moller@math.ku.dk
- Received by editor(s): May 4, 1999
- Published electronically: May 3, 2001
- Additional Notes: C. Broto is partially supported by DGES grant 97-0203
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4461-4479
- MSC (1991): Primary 55R35, 55P15, 55P10
- DOI: https://doi.org/10.1090/S0002-9947-01-02781-7
- MathSciNet review: 1851179