On the semisimplicity conjecture and Galois representations
HTML articles powered by AMS MathViewer
- by Lei Fu
- Trans. Amer. Math. Soc. 353 (2001), 4357-4369
- DOI: https://doi.org/10.1090/S0002-9947-01-02814-8
- Published electronically: June 21, 2001
- PDF | Request permission
Abstract:
The semisimplicity conjecture says that for any smooth projective scheme $X_0$ over a finite field $\mathbf {F}_q$, the Frobenius correspondence acts semisimply on $H^i(X\otimes _{\mathbf { F}_q} \mathbf { F}, \overline {\mathbf { Q}}_l)$, where $\mathbf { F}$ is an algebraic closure of $\mathbf { F}_q$. Based on the works of Deligne and Laumon, we reduce this conjecture to a problem about the Galois representations of function fields. This reduction was also achieved by Laumon a few years ago (unpublished).References
- A. A. BeÄlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) AstĂ©risque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5â171 (French). MR 751966
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Ătudes Sci. Publ. Math. 52 (1980), 137â252 (French). MR 601520
- P. Deligne, Correction to: âLes constantes des Ă©quations fonctionelles des fonctions $L$â (Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 501â597, Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975, pp. p. 149 (French). MR 0387248
- Pierre Deligne, DĂ©compositions dans la catĂ©gorie dĂ©rivĂ©e, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 115â128 (French). MR 1265526, DOI 10.1090/pspum/055.1/1265526
- Lei Fu, On the semisimplicity of pure sheaves, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2529â2533. MR 1676348, DOI 10.1090/S0002-9939-99-05414-3
- Nicholas M. Katz, Travaux de Laumon, AstĂ©risque 161-162 (1988), Exp. No. 691, 4, 105â132 (1989). SĂ©minaire Bourbaki, Vol. 1987/88. MR 992205
- G. Laumon, Transformation de Fourier, constantes dâĂ©quations fonctionnelles et conjecture de Weil, Inst. Hautes Ătudes Sci. Publ. Math. 65 (1987), 131â210 (French). MR 908218
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492â517. MR 236190, DOI 10.2307/1970722
- Séminaire de Géométrie Algébrique du Bois-Marie.
- Arnaud Denjoy, Sur certaines sĂ©ries de Taylor admettant leur cercle de convergence comme coupure essentielle, C. R. Acad. Sci. Paris 209 (1939), 373â374 (French). MR 50
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- Arnaud Denjoy, Sur certaines sĂ©ries de Taylor admettant leur cercle de convergence comme coupure essentielle, C. R. Acad. Sci. Paris 209 (1939), 373â374 (French). MR 50
Bibliographic Information
- Lei Fu
- Affiliation: Institute of Mathematics, Nankai University, Tianjin, P. R. China
- Email: leifu@nankai.edu.cn
- Received by editor(s): November 5, 1999
- Published electronically: June 21, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4357-4369
- MSC (1991): Primary 14F20, 14G15
- DOI: https://doi.org/10.1090/S0002-9947-01-02814-8
- MathSciNet review: 1851174