Arithmetic rigidity and units in group rings
HTML articles powered by AMS MathViewer
- by F. E. A. Johnson
- Trans. Amer. Math. Soc. 353 (2001), 4623-4635
- DOI: https://doi.org/10.1090/S0002-9947-01-02816-1
- Published electronically: May 9, 2001
- PDF | Request permission
Abstract:
For any finite group $G$ the group $U(\mathbf {Z}[G])$ of units in the integral group ring $\mathbf {Z}[G]$ is an arithmetic group in a reductive algebraic group, namely the Zariski closure of $\mathbf {SL}_1(\mathbf {Q}[G])$. In particular, the isomorphism type of the $\mathbf {Q}$-algebra $\mathbf {Q}[G]$ determines the commensurability class of $U(\mathbf {Z}[G])$; we show that, to a large extent, the converse is true. In fact, subject to a certain restriction on the $\mathbf {Q}$-representations of $G$ the converse is exactly true.References
- A. A. Albert; Involutorial simple algebras and real Riemann matrices: Ann. of Math. 36 (1935) 886 - 964.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Robert Bieri and Beno Eckmann, Groups with homological duality generalizing Poincaré duality, Invent. Math. 20 (1973), 103–124. MR 340449, DOI 10.1007/BF01404060
- Armand Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966), 78–89. MR 205999, DOI 10.1515/crll.1966.224.78
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR 0244260
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491. MR 387495, DOI 10.1007/BF02566134
- K. L. Fields, On the Brauer-Speiser theorem, Bull. Amer. Math. Soc. 77 (1971), 223. MR 268293, DOI 10.1090/S0002-9904-1971-12691-5
- F. E. A. Johnson, On the existence of irreducible discrete subgroups in isotypic Lie groups of classical type, Proc. London Math. Soc. (3) 56 (1988), no. 1, 51–77. MR 915530, DOI 10.1112/plms/s3-56.1.51
- F. E. A. Johnson, On the uniqueness of arithmetic structures, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 5, 1037–1044. MR 1303769, DOI 10.1017/S0308210500022496
- F. E. A. Johnson, Linear properties of poly-Fuchsian groups, Collect. Math. 45 (1994), no. 2, 183–203. MR 1316936
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265. MR 690845, DOI 10.2307/2007076
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
- Jean-Pierre Serre, Cohomologie galoisienne, Lecture Notes in Mathematics, No. 5, Springer-Verlag, Berlin-New York, 1965 (French). With a contribution by Jean-Louis Verdier; Troisième édition, 1965. MR 0201444
- Goro Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. (2) 78 (1963), 149–192. MR 156001, DOI 10.2307/1970507
- John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR 228573, DOI 10.2307/1970577
Bibliographic Information
- F. E. A. Johnson
- Affiliation: Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Email: feaj@math.ucl.ac.uk
- Received by editor(s): November 12, 1999
- Received by editor(s) in revised form: August 28, 2000
- Published electronically: May 9, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4623-4635
- MSC (2000): Primary 20C05; Secondary 20G20, 22E40
- DOI: https://doi.org/10.1090/S0002-9947-01-02816-1
- MathSciNet review: 1851185