Limit theorems for functionals of mixing processes with applications to $U$-statistics and dimension estimation
HTML articles powered by AMS MathViewer
- by Svetlana Borovkova, Robert Burton and Herold Dehling
- Trans. Amer. Math. Soc. 353 (2001), 4261-4318
- DOI: https://doi.org/10.1090/S0002-9947-01-02819-7
- Published electronically: June 20, 2001
- PDF | Request permission
Abstract:
In this paper we develop a general approach for investigating the asymptotic distribution of functionals $X_n=f((Z_{n+k})_{k\in \mathbf {Z}})$ of absolutely regular stochastic processes $(Z_n)_{n\in \mathbf {Z}}$. Such functionals occur naturally as orbits of chaotic dynamical systems, and thus our results can be used to study probabilistic aspects of dynamical systems. We first prove some moment inequalities that are analogous to those for mixing sequences. With their help, several limit theorems can be proved in a rather straightforward manner. We illustrate this by re-proving a central limit theorem of Ibragimov and Linnik. Then we apply our techniques to $U$-statistics \[ U_n(h) =\frac {1}{{n\choose 2}}\sum _{1\leq i<j\leq n} h(X_i,X_j) \] with symmetric kernel $h:\mathbf {R}\times \mathbf {R}\rightarrow \mathbf {R}$. We prove a law of large numbers, extending results of Aaronson, Burton, Dehling, Gilat, Hill and Weiss for absolutely regular processes. We also prove a central limit theorem under a different set of conditions than the known results of Denker and Keller. As our main application, we establish an invariance principle for $U$-processes $(U_n(h))_{h}$, indexed by some class of functions. We finally apply these results to study the asymptotic distribution of estimators of the fractal dimension of the attractor of a dynamical system.References
- J. Aaronson, R. Burton, H. Dehling, D. Gilat, T. Hill, and B. Weiss, Strong laws for $L$- and $U$-statistics, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2845–2866. MR 1363941, DOI 10.1090/S0002-9947-96-01681-9
- Roy L. Adler and Benjamin Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR 0257315
- M. A. Arcones and B. Yu, Central limit theorems for empirical and $U$-processes of stationary mixing sequences, J. Theoret. Probab. 7 (1994), no. 1, 47–71. MR 1256391, DOI 10.1007/BF02213360
- Michael F. Barnsley, Fractals everywhere, 2nd ed., Academic Press Professional, Boston, MA, 1993. Revised with the assistance of and with a foreword by Hawley Rising, III. MR 1231795
- Henry C. P. Berbee, Random walks with stationary increments and renewal theory, Mathematical Centre Tracts, vol. 112, Mathematisch Centrum, Amsterdam, 1979. MR 547109
- Robert H. Berk, Limiting behavior of posterior distributions when the model is incorrect, Ann. Math. Statist. 37 (1966), 51–58; correction, ibid. 745–746. MR 189176, DOI 10.1214/aoms/1177699477
- István Berkes and Walter Philipp, An almost sure invariance principle for the empirical distribution function of mixing random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), no. 2, 115–137. MR 464344, DOI 10.1007/BF00538416
- István Berkes and Walter Philipp, Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 (1979), no. 1, 29–54. MR 515811
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- Borovkova, S. (1995). Weak convergence of the empirical process of $U$-statistics structure for dependent observations. Theor. Stoch. Proc. 2 (18), 115-124.
- Rufus Bowen, Smooth partitions of Anosov diffeomorphisms are weak Bernoulli, Israel J. Math. 21 (1975), no. 2-3, 95–100. MR 385927, DOI 10.1007/BF02760788
- S. Borovkova, R. Burton, and H. Dehling, Consistency of the Takens estimator for the correlation dimension, Ann. Appl. Probab. 9 (1999), no. 2, 376–390. MR 1687339, DOI 10.1214/aoap/1029962747
- Robert M. Burton and William G. Faris, A self-organizing cluster process, Ann. Appl. Probab. 6 (1996), no. 4, 1232–1247. MR 1422984, DOI 10.1214/aoap/1035463330
- Robert M. Burton, Cornelis Kraaikamp, and Thomas A. Schmidt, Natural extensions for the Rosen fractions, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1277–1298. MR 1650073, DOI 10.1090/S0002-9947-99-02442-3
- Z. P. Dienes, Canonic elements in the higher classes of Borel sets, J. London Math. Soc. 14 (1939), 169–175. MR 44, DOI 10.1112/jlms/s1-14.3.169
- Herold Dehling and Walter Philipp, Almost sure invariance principles for weakly dependent vector-valued random variables, Ann. Probab. 10 (1982), no. 3, 689–701. MR 659538
- Herold Dehling, Manfred Denker, and Walter Philipp, The almost sure invariance principle for the empirical process of $U$-statistic structure, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, 121–134 (English, with French summary). MR 891707
- Herold Dehling and Murad S. Taqqu, The empirical process of some long-range dependent sequences with an application to $U$-statistics, Ann. Statist. 17 (1989), no. 4, 1767–1783. MR 1026312, DOI 10.1214/aos/1176347394
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675
- I. Rihaoui, Continuité et différentiabilité des translations dans un espace gaussien, Math. Scand. 51 (1982), no. 1, 179–192 (French). MR 681267, DOI 10.7146/math.scand.a-11972
- Manfred Denker and Gerhard Keller, Rigorous statistical procedures for data from dynamical systems, J. Statist. Phys. 44 (1986), no. 1-2, 67–93. MR 854400, DOI 10.1007/BF01010905
- Chandrakant M. Deo, A note on empirical processes of strong-mixing sequences, Ann. Probability 1 (1973), no. 5, 870–875. MR 356160, DOI 10.1214/aop/1176996855
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- R. M. Dudley and Walter Philipp, Invariance principles for sums of Banach space valued random elements and empirical processes, Z. Wahrsch. Verw. Gebiete 62 (1983), no. 4, 509–552. MR 690575, DOI 10.1007/BF00534202
- Peter Grassberger and Itamar Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50 (1983), no. 5, 346–349. MR 689681, DOI 10.1103/PhysRevLett.50.346
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- R. Helmers, P. Janssen, and R. Serfling, Glivenko-Cantelli properties of some generalized empirical DF’s and strong convergence of generalized $L$-statistics, Probab. Theory Related Fields 79 (1988), no. 1, 75–93. MR 952995, DOI 10.1007/BF00319105
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Hoeffding, W. (1961). The strong law of large numbers for $U$-statistics. University of North Carolina Mimeo Report No. 302.
- Franz Hofbauer and Gerhard Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), no. 1, 119–140. MR 656227, DOI 10.1007/BF01215004
- I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
- Michel Loève, Probability theory. I, 4th ed., Graduate Texts in Mathematics, Vol. 45, Springer-Verlag, New York-Heidelberg, 1977. MR 0651017
- Hitoshi Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), no. 2, 399–426. MR 646050, DOI 10.3836/tjm/1270215165
- Hitoshi Nakada, Shunji Ito, and Shigeru Tanaka, On the invariant measure for the transformations associated with some real continued-fractions, Keio Engrg. Rep. 30 (1977), no. 13, 159–175. MR 498461
- Deborah Nolan and David Pollard, Functional limit theorems for $U$-processes, Ann. Probab. 16 (1988), no. 3, 1291–1298. MR 942769
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286, DOI 10.1017/CBO9780511608728
- Walter Philipp, A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probability 5 (1977), no. 3, 319–350. MR 443024, DOI 10.1214/aop/1176995795
- Walter Philipp, Invariance principles for independent and weakly dependent random variables, Dependence in probability and statistics (Oberwolfach, 1985) Progr. Probab. Statist., vol. 11, Birkhäuser Boston, Boston, MA, 1986, pp. 225–268. MR 899992
- Ritter, H., T. Martinez, and K. Schulten (1992). Neural Computation and Self-Organizing Maps. Addison-Wesley Reading, MA.
- Robert J. Serfling, Generalized $L$-, $M$-, and $R$-statistics, Ann. Statist. 12 (1984), no. 1, 76–86. MR 733500, DOI 10.1214/aos/1176346393
- B. W. Silverman, Convergence of a class of empirical distribution functions of dependent random variables, Ann. Probab. 11 (1983), no. 3, 745–751. MR 704560
- Bernard Silverman and Tim Brown, Short distances, flat triangles and Poisson limits, J. Appl. Probab. 15 (1978), no. 4, 815–825. MR 511059, DOI 10.2307/3213436
- Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theor. Probab. Appl. 21, 628-632.
- Strassen, V., Dudley, R.M. (1969). The central limit theorem and $\varepsilon$-entropy. In: Lecture Notes in Mathematics 89, 224-231, Springer-Verlag, Berlin.
- Floris Takens, Detecting strange attractors in turbulence, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 366–381. MR 654900
- B. L. J. Braaksma, H. W. Broer, and F. Takens (eds.), Dynamical systems and bifurcations, Lecture Notes in Mathematics, vol. 1125, Springer-Verlag, Berlin, 1985. MR 798077, DOI 10.1007/BFb0075630
- C. S. Withers, Convergence of empirical processes of mixing rv’s on $[0,\,1]$, Ann. Statist. 3 (1975), no. 5, 1101–1108. MR 394794
- Ken-ichi Yoshihara, Limiting behavior of $U$-statistics for stationary, absolutely regular processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35 (1976), no. 3, 237–252. MR 418179, DOI 10.1007/BF00532676
Bibliographic Information
- Svetlana Borovkova
- Affiliation: ITS-SSOR, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
- Email: S.A.Borovkova@its.tudelft.nl
- Robert Burton
- Affiliation: Department of Mathematics, Oregon State University, Kidder Hall 368, Corvallis Oregon 97331
- Email: burton@math.orst.edu
- Herold Dehling
- Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
- Email: herold.dehling@ruhr-uni-bochum.de
- Received by editor(s): October 28, 1999
- Received by editor(s) in revised form: December 14, 2000
- Published electronically: June 20, 2001
- Additional Notes: Research supported by the Netherlands Organization for Scientific Research (NWO) grant NLS 61-277, NSF grant DMS 96-26575 and NATO collaborative research grant CRG 930819
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4261-4318
- MSC (1991): Primary 60F05, 62M10
- DOI: https://doi.org/10.1090/S0002-9947-01-02819-7
- MathSciNet review: 1851171