Gauss sums and Kloosterman sums over residue rings of algebraic integers
HTML articles powered by AMS MathViewer
- by Ronald Evans
- Trans. Amer. Math. Soc. 353 (2001), 4429-4445
- DOI: https://doi.org/10.1090/S0002-9947-01-02823-9
- Published electronically: June 27, 2001
- PDF | Request permission
Abstract:
Let $\mathcal {O}$ denote the ring of integers of an algebraic number field of degree $m$ which is totally and tamely ramified at the prime $p$. Write $\zeta _q= \exp (2\pi i/q)$, where $q=p^r$. We evaluate the twisted Kloosterman sum \[ \sum \limits _{\alpha \in (\mathcal {O}/q \mathcal {O})^*} \chi (N(\alpha )) \zeta _q^{T(\alpha )+z/N(\alpha )},\] where $T$ and $N$ denote trace and norm, and where $\chi$ is a Dirichlet character (mod $q$). This extends results of Salié for $m=1$ and of Yangbo Ye for prime $m$ dividing $p-1.$ Our method is based upon our evaluation of the Gauss sum \begin{equation*}\sum \limits _{\alpha \in (\mathcal {O}/q\mathcal {O})^*} \chi (N(\alpha )) \zeta _q^{T(\alpha )},\end{equation*} which extends results of Mauclaire for $m=1$.References
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1625181
- H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172(1934), 151-182.
- W. Duke, On multiple Salié sums, Proc. Amer. Math. Soc. 114 (1992), no. 3, 623–625. MR 1077785, DOI 10.1090/S0002-9939-1992-1077785-2
- R. J. Evans, Twisted hyper-Kloosterman sums over finite rings of integers, Proceedings of the Millennial Conference on Number Theory, University of Illinois (May 21-26, 2000), A K Peters, Natick, MA, to appear in 2001.
- Takeo Funakura, A generalization of the Chowla-Mordell theorem on Gaussian sums, Bull. London Math. Soc. 24 (1992), no. 5, 424–430. MR 1173937, DOI 10.1112/blms/24.5.424
- Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR 955052, DOI 10.1515/9781400882120
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081
- J.-L. Mauclaire, Sommes de Gauss modulo $p^{\alpha }$. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 3, 109–112 (French). MR 711310
- J.-L. Mauclaire, Sommes de Gauss modulo $p^{\alpha }$. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 3, 109–112 (French). MR 711310
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin; PWN—Polish Scientific Publishers, Warsaw, 1990. MR 1055830
- R. Odoni, On Gauss sums $(\textrm {mod}\ p^{n})$, $n\geq 2$, Bull. London Math. Soc. 5 (1973), 325–327. MR 327678, DOI 10.1112/blms/5.3.325
- H. Salié, Über die Kloostermanschen Summen $S(u, v; q)$, Math. Z. 34(1932), 91-109.
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Yangbo Ye, A hyper-Kloosterman sum identity, Sci. China Ser. A 41 (1998), no. 11, 1158–1162. MR 1671389, DOI 10.1007/BF02871978
- Yangbo Ye, The lifting of an exponential sum to a cyclic algebraic number field of prime degree, Trans. Amer. Math. Soc. 350 (1998), no. 12, 5003–5015. MR 1433129, DOI 10.1090/S0002-9947-98-02001-7
- Y. Ye, Personal communication, November, 1999.
Bibliographic Information
- Ronald Evans
- Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
- MR Author ID: 64500
- Email: revans@ucsd.edu
- Received by editor(s): November 17, 1999
- Received by editor(s) in revised form: January 4, 2001
- Published electronically: June 27, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4429-4445
- MSC (2000): Primary 11L05, 11T24
- DOI: https://doi.org/10.1090/S0002-9947-01-02823-9
- MathSciNet review: 1851177