Representation theory and ADHM-construction on quaternion symmetric spaces
HTML articles powered by AMS MathViewer
- by Yasuyuki Nagatomo
- Trans. Amer. Math. Soc. 353 (2001), 4333-4355
- DOI: https://doi.org/10.1090/S0002-9947-01-02829-X
- Published electronically: June 14, 2001
- PDF | Request permission
Abstract:
We determine all irreducible homogeneous bundles with anti-self-dual canonical connections on compact quaternion symmetric spaces. To deform the canonical connections, we give a relation between the representation theory and the theory of monads on the twistor space. The moduli spaces are described via the Bott-Borel-Weil Thereom. The Horrocks bundle is also generalized to higher-dimensional projective spaces.References
- M. F. Atiyah, Geometry on Yang-Mills fields, Scuola Normale Superiore, Pisa, 1979. MR 554924
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- Vincenzo Ancona and Giorgio Ottaviani, Stability of special instanton bundles on $\textbf {P}^{2n+1}$, Trans. Amer. Math. Soc. 341 (1994), no. 2, 677–693. MR 1136544, DOI 10.1090/S0002-9947-1994-1136544-9
- Robert J. Baston and Michael G. Eastwood, The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Its interaction with representation theory; Oxford Science Publications. MR 1038279
- N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1364, Hermann, Paris, 1975 (French). MR 0453824
- N. P. Buchdahl, Instantons on $\textbf {C}\textrm {P}_2$, J. Differential Geom. 24 (1986), no. 1, 19–52. MR 857374
- S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1990. Oxford Science Publications. MR 1079726
- Hideo Doi and Takayuki Okai, Moduli space of $1$-instantons on a quaternionic projective space $\textbf {H}\textrm {P}^n$, Hiroshima Math. J. 19 (1989), no. 2, 251–258. MR 1027930
- Krzysztof Galicki and Yat Sun Poon, Duality and Yang-Mills fields on quaternionic Kähler manifolds, J. Math. Phys. 32 (1991), no. 5, 1263–1268. MR 1103479, DOI 10.1063/1.529501
- N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), no. 1, 133–150. MR 623721, DOI 10.1112/plms/s3-43.1.133
- G. Horrocks, Examples of rank three vector bundles on five-dimensional projective space, J. London Math. Soc. (2) 18 (1978), no. 1, 15–27. MR 502651, DOI 10.1112/jlms/s2-18.1.15
- Yukio Kametani and Yasuyuki Nagatomo, Construction of $c_2$-self-dual bundles on a quaternionic projective space, Osaka J. Math. 32 (1995), no. 4, 1023–1033. MR 1380739
- Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
- M. Mamone Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), no. 4, 517–530. MR 967469
- Yasuyuki Nagatomo, Rigidity of $c_1$-self-dual connections on quaternionic Kähler manifolds, J. Math. Phys. 33 (1992), no. 12, 4020–4025. MR 1191760, DOI 10.1063/1.529989
- Yasuyuki Nagatomo, Vanishing theorem for cohomology groups of $c_2$-self-dual bundles on quaternionic Kähler manifolds, Differential Geom. Appl. 5 (1995), no. 1, 79–97. MR 1319938, DOI 10.1016/0926-2245(95)00008-R
- Yasuyuki Nagatomo and Takashi Nitta, Vanishing theorems for quaternionic complexes, Bull. London Math. Soc. 29 (1997), no. 3, 359–366. MR 1435574, DOI 10.1112/S0024609396002470
- Yasuyuki Nagatomo and Takashi Nitta, $k$-instantons on $G_2(\textbf {C}^{n+2})$ and stable vector bundles, Math. Z. 232 (1999), no. 4, 721–737. MR 1727550, DOI 10.1007/PL00004780
- Yasuyuki Nagatomo and Takashi Nitta, Moduli of $1$-instantons on $G_2(\mathbf C^{n+2})$, Differential Geom. Appl. 7 (1997), no. 2, 115–122. MR 1454717, DOI 10.1016/S0926-2245(96)00041-1
- Takashi Nitta, Vector bundles over quaternionic Kähler manifolds, Tohoku Math. J. (2) 40 (1988), no. 3, 425–440. MR 957054, DOI 10.2748/tmj/1178227984
- Christian Okonek and Heinz Spindler, Mathematical instanton bundles on $\textbf {P}^{2n+1}$, J. Reine Angew. Math. 364 (1986), 35–50. MR 817636, DOI 10.1515/crll.1986.364.35
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- Giorgio Ottaviani and Günther Trautmann, The tangent space at a special symplectic instanton bundle on $\textbf {P}_{2n+1}$, Manuscripta Math. 85 (1994), no. 1, 97–107. MR 1299051, DOI 10.1007/BF02568187
- Simon Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), no. 1, 143–171. MR 664330, DOI 10.1007/BF01393378
- Heinz Spindler, Holomorphe Vektorbündel auf $\textbf {P}_{n}$ mit $c_{1}=0$ und $c_{2}=1$, Manuscripta Math. 42 (1983), no. 2-3, 171–198 (German, with English summary). MR 701202, DOI 10.1007/BF01169582
- H. Spindler and G. Trautmann, Special instanton bundles on $\textbf {P}_{2N+1}$, their geometry and their moduli, Math. Ann. 286 (1990), no. 1-3, 559–592. MR 1032947, DOI 10.1007/BF01453589
- Joseph A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047. MR 0185554
Bibliographic Information
- Yasuyuki Nagatomo
- Affiliation: Department of Mathematics, Sophia University, Kioicho, Tokyo 102, Japan
- Address at time of publication: Faculty of Mathematics, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan
- Email: nagatomo@math.kyushu-u.ac.jp
- Received by editor(s): October 25, 1996
- Received by editor(s) in revised form: September 7, 2000
- Published electronically: June 14, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4333-4355
- MSC (1991): Primary 53C07, 32M10, 53C26
- DOI: https://doi.org/10.1090/S0002-9947-01-02829-X
- MathSciNet review: 1851173