Boundedness and differentiability for nonlinear elliptic systems
HTML articles powered by AMS MathViewer
- by Jana Björn
- Trans. Amer. Math. Soc. 353 (2001), 4545-4565
- DOI: https://doi.org/10.1090/S0002-9947-01-02834-3
- Published electronically: May 9, 2001
- PDF | Request permission
Abstract:
We consider the elliptic system $\operatorname {div} (\mathcal {A}^j (x,u,\nabla u)) = \mathcal {B}^j (x,u,\nabla u)$, $j=1,\ldots ,N,$ and an obstacle problem for a similar system of variational inequalities. The functions $\mathcal {A}^j$ and $\mathcal {B}^j$ satisfy certain ellipticity and boundedness conditions with a $p$-admissible weight $w$ and exponent $1<p\le 2$. The growth of $\mathcal {B}^j$ in $|\nabla u|$ and $|u|$ is of order $p-1$. We show that weak solutions of the above systems are locally bounded and differentiable almost everywhere in the classical sense.References
- E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: the case $1<p<2$, J. Math. Anal. Appl. 140 (1989), no. 1, 115–135. MR 997847, DOI 10.1016/0022-247X(89)90098-X
- T. N. E. Greville, Some extensions of Mr. Beers’s method of interpolation, Record. Amer. Inst. Actuar. 34 (1945), 188–193. MR 20001
- J. Björn, Poincaré inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn. Math. 26 (2001), 175–188.
- Bogdan Bojarski, Pointwise differentiability of weak solutions of elliptic divergence type equations, Bull. Polish Acad. Sci. Math. 33 (1985), no. 1-2, 1–6 (English, with Russian summary). MR 798721
- Ennio De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. (4) 1 (1968), 135–137 (Italian). MR 0227827
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Jens Frehse, Una generalizzazione di un controesempio di De Giorgi nella teoria delle equazioni ellitiche, Boll. Un. Mat. Ital. (4) 3 (1970), 998–1002 (Italian). MR 0276612
- Jens Frehse and Umberto Mosco, Variational inequalities with one-sided irregular obstacles, Manuscripta Math. 28 (1979), no. 1-3, 219–233. MR 535703, DOI 10.1007/BF01647973
- Martin Fuchs, $p$-harmonic obstacle problems. I. Partial regularity theory, Ann. Mat. Pura Appl. (4) 156 (1990), 127–158. MR 1080213, DOI 10.1007/BF01766976
- Martin Fuchs, Smoothness for systems of degenerate variational inequalities with natural growth, Comment. Math. Univ. Carolin. 33 (1992), no. 1, 33–41. MR 1173743
- Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
- Mariano Giaquinta and Giuseppe Modica, Almost-everywhere regularity results for solutions of nonlinear elliptic systems, Manuscripta Math. 28 (1979), no. 1-3, 109–158. MR 535699, DOI 10.1007/BF01647969
- E. Giusti, Un’aggiunta alla mia nota: “Regolarità parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario” (Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 115–141), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 161–166 (Italian). MR 385297
- E. Giusti and M. Miranda, Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Rational Mech. Anal. 31 (1968/69), 173–184 (Italian). MR 235264, DOI 10.1007/BF00282679
- Piotr Hajłasz and Pekka Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211–1215 (English, with English and French summaries). MR 1336257
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
- Piotr Hajłasz and PawełStrzelecki, On the differentiability of solutions of quasilinear elliptic equations, Colloq. Math. 64 (1993), no. 2, 287–291. MR 1218491, DOI 10.4064/cm-64-2-287-291
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- S. Hildebrandt and K.-O. Widman, Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 191–220. MR 542048
- Per-Anders Ivert, Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung, Manuscripta Math. 30 (1979/80), no. 1, 53–88 (German, with English summary). MR 552363, DOI 10.1007/BF01305990
- Jana Ježková, Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities, Comment. Math. Univ. Carolin. 35 (1994), no. 1, 63–80. MR 1292584
- Oldřich John, Jan Malý, and Jana Stará, Nowhere continuous solutions to elliptic systems, Comment. Math. Univ. Carolin. 30 (1989), no. 1, 33–43. MR 995699
- Grzegorz Karch and Tonia Ricciardi, Note on Lorentz spaces and differentiability of weak solutions to elliptic equations, Bull. Polish Acad. Sci. Math. 45 (1997), no. 1, 111–116. MR 1444676
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- R. Landes, A remark on the existence proof of Hopf’s solution of the Navier-Stokes equation, Arch. Math. (Basel) 47 (1986), no. 4, 367–371. MR 866526, DOI 10.1007/BF01191364
- Hans Lewy and Guido Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153–188. MR 247551, DOI 10.1002/cpa.3160220203
- Michael Meier, Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, J. Reine Angew. Math. 333 (1982), 191–220. MR 660791, DOI 10.1515/crll.1982.333.191
- J. H. Michael and William P. Ziemer, Interior regularity for solutions to obstacle problems, Nonlinear Anal. 10 (1986), no. 12, 1427–1448. MR 869551, DOI 10.1016/0362-546X(86)90113-6
- Charles B. Morrey Jr., Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1967/1968), 649–670. MR 0237947
- Yi Yi Nie and Shao Bei Chen, About some notes in the variational principle, Acta Math. Sci. (English Ed.) 3 (1983), no. 1, 85–93. MR 741360, DOI 10.1016/S0252-9602(18)30589-7
- J. Nečas and J. Stará, Principio di massimo per i sistemi ellittici quasi-lineari non diagonali, Boll. Un. Mat. Ital. (4) 6 (1972), 1–10 (Italian, with English summary). MR 0315281
- Yu. G. Reshetnyak, The differentiability almost everywhere of the solutions of elliptic equations, Sibirsk. Mat. Zh. 28 (1987), no. 4, 193–195 (Russian). MR 906049
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- M. W. Stepanoff, Sur les conditions de l’existence de la différentielle totale, Mat. Sb., Rec. Math. Soc. Math. Moscou 32 (1925), 511–527.
- Peter Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983), no. 7, 773–817. MR 700735, DOI 10.1080/03605308308820285
- I. Berkes, An almost sure invariance principle for lacunary trigonometric series, Acta Math. Acad. Sci. Hungar. 26 (1975), 209–220. MR 426085, DOI 10.1007/BF01895964
- M. V. Fedoryuk, Lamé wave functions, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 4, 853–874, 896 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 1, 179–200. MR 966987, DOI 10.1070/IM1989v033n01ABEH000819
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Jana Björn
- Affiliation: Department of Mathematics, Lund Institute of Technology, P. O. Box 118, SE-221 00 Lund, Sweden
- Email: jabjo@maths.lth.se, jabjo@mai.liu.se
- Received by editor(s): December 8, 1999
- Received by editor(s) in revised form: November 20, 2000
- Published electronically: May 9, 2001
- Additional Notes: The results of this paper were obtained while the author was visiting the University of Michigan, Ann Arbor, on leave from the Linköping University. The research was supported by grants from the Swedish Natural Science Research Council, the Knut and Alice Wallenberg Foundation and Gustaf Sigurd Magnusons fond of the Royal Swedish Academy of Sciences.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4545-4565
- MSC (2000): Primary 35J70; Secondary 35B35, 35B65, 35D10, 35J60, 35J85
- DOI: https://doi.org/10.1090/S0002-9947-01-02834-3
- MathSciNet review: 1851183