Unbounded components of the singular set of the distance function in $\mathbb R^n$
HTML articles powered by AMS MathViewer
- by Piermarco Cannarsa and Roberto Peirone
- Trans. Amer. Math. Soc. 353 (2001), 4567-4581
- DOI: https://doi.org/10.1090/S0002-9947-01-02836-7
- Published electronically: June 1, 2001
- PDF | Request permission
Abstract:
Given a closed set $F\subseteq \mathbb {R}^{n}$, the set $\Sigma _{F}$ of all points at which the metric projection onto $F$ is multi-valued is nonempty if and only if $F$ is nonconvex. The authors analyze such a set, characterizing the unbounded connected components of $\Sigma _{F}$. For $F$ compact, the existence of an asymptote for any unbounded component of $\Sigma _{F}$ is obtained.References
- P. Albano and P. Cannarsa, Propagation of Singularities for Solutions of Nonlinear First Order PDEs, Submitted.
- G. Alberti, L. Ambrosio, and P. Cannarsa, On the singularities of convex functions, Manuscripta Math. 76 (1992), no. 3-4, 421–435. MR 1185029, DOI 10.1007/BF02567770
- K. Bartke and H. Berens, Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der Euklidischen Ebene, J. Approx. Theory 47 (1986), no. 1, 54–74 (German, with English summary). MR 843455, DOI 10.1016/0021-9045(86)90046-8
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- T. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 21 (1935), 562–567.
- T. Motzkin, Sur quelques propriétés caractéristiques des ensembles bornés non convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 21 (1935), 773–779.
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Libor Veselý, A connectedness property of maximal monotone operators and its application to approximation theory, Proc. Amer. Math. Soc. 115 (1992), no. 3, 663–667. MR 1095227, DOI 10.1090/S0002-9939-1992-1095227-8
- J. Frerking and U. Westphal, On a property of metric projections onto closed subsets of Hilbert spaces, Proc. Amer. Math. Soc. 105 (1989), no. 3, 644–651. MR 946636, DOI 10.1090/S0002-9939-1989-0946636-6
- Joel Anderson, On unitary equivalence of representations of $C^{\ast }$-algebras, Proc. Amer. Math. Soc. 74 (1979), no. 2, 307–310. MR 524306, DOI 10.1090/S0002-9939-1979-0524306-X
Bibliographic Information
- Piermarco Cannarsa
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma (Italy)
- Email: cannarsa@ mat.uniroma2.it
- Roberto Peirone
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma (Italy)
- Email: peirone@ mat.uniroma2.it
- Received by editor(s): October 19, 2000
- Received by editor(s) in revised form: December 20, 2000
- Published electronically: June 1, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4567-4581
- MSC (1991): Primary 41A65, 26A27; Secondary 34A60, 49J52
- DOI: https://doi.org/10.1090/S0002-9947-01-02836-7
- MathSciNet review: 1851184