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ISOMETRIES OF HILBERT C∗-MODULES

BARUCH SOLEL

Abstract. Let X and Y be right, full, Hilbert C∗-modules over the algebras
A and B respectively and let T : X → Y be a linear surjective isometry. Then
T can be extended to an isometry of the linking algebras. T then is a sum
of two maps: a (bi-)module map (which is completely isometric and preserves
the inner product) and a map that reverses the (bi-)module actions. If A (or
B) is a factor von Neumann algebra, then every isometry T : X → Y is either
a (bi-)module map or reverses the (bi-)module actions.

1. Introduction

Given a right Hilbert C∗-module X over a C∗-algebra A it is a module over A
and has an A-valued inner product. One then defines the norm of X using the
inner product and it makes X a Banach space. It is known that once the module
structure and Banach space structure are given (for a C∗-module X) the A-valued
inner product is uniquely defined. This was proved by Lance in [L1, Theorem] and,
shortly afterwards, by Blecher in [B1, Theorems 3.1 and 3.2]. In fact, as Blecher
showed, the inner product can be recovered from the module and Banach space
structures. The results of Lance and Blecher can be stated as follows.

Theorem 1.1 ([B2], [L1]). Let X1 and X2 be right Hilbert C∗-modules over a C∗-
algebra A and let S : X1 → X2 be a surjective isometry which is an A-module map.
Then S preserves the inner product, i.e. 〈Sx, Sy〉2 = 〈x, y〉1 (where 〈·, ·〉j is the
inner product in Xj). Moreover, the inner product of a right Hilbert C∗-module X
over A can be recovered from the norm and the module structure by

〈x, x〉 = sup{r(x)∗r(x) : r is an A-module map: X → A, ‖r‖ ≤ 1}
and

〈x, y〉 =
1
4

3∑
k=0

ik
〈
x+ iky, x+ iky

〉
(i =

√
−1).

Another proof can be found in [F, Theorem 5]. One can modify the first part of
the theorem for the case where X1 is a C∗-module over A and X2 is a C∗-module
over B and S is a module map in the sense that there is a ∗-isomorphism α : A→ B
such that S(xa) = (Sx)α(a). In this case S satisfies 〈Sx, Sy〉2 = α(〈x, y〉1). (See
[MS, Lemma 5.10].)
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In the present paper we study to what extent it is possible to recover the C∗-
module structure from the Banach space structure alone. In other words, given
an isometry T (linear and surjective) of a C∗-module X over A onto a C∗-module
Y over B, is it a module map? i.e. can we find a ∗-isomorphism α of A onto
B with T (xa) = T (x)α(a)? If we can, then, as we mentioned above, we have
〈Tx, T y〉 = α(〈x, y〉). Also, denoting by y ⊗ z∗ (for y, z ∈ X) the operator on X
defined by (y ⊗ z∗)(x) = y 〈z, x〉, we have

T
(
(y ⊗ z∗)(x)

)
= T

(
y 〈z, x〉

)
= T (y)α

(
〈z, x〉

)
= T (y) 〈T (z), T (x)〉 =

(
T (y)⊗ T (z)∗

)
(T (x)).

The operators of the form y ⊗ z∗, y, z ∈ X , generate a C∗-algebra denoted by
K(X). It is possible to show that, for T as above, β(y ⊗ z∗) = Ty ⊗ (Tz)∗ defines
a ∗-isomorphism β : K(X)→ K(Y ). The computation above shows that T (Kx) =
β(K)Tx for x ∈ X, K ∈ K(X). The relationship we have now between T, α on
β can be summarized by considering the ∗-algebra L(X) defined by

L(X) =
(
K(X) X
X̄ A

)
(where X̄ and the product and involution on L(X) will be defined shortly) and
noting that the map ψ : L(X)→ L(Y ) defined by

ψ

(
K x
ȳ a

)
=
(
β(K) Tx
Ty α(a)

)
is a ∗-isomorphism.

Hence to say that T preserves the C∗-module structure amounts to saying that
T can be extended to a ∗-isomorphism of L(X) onto L(Y ).

By considering the transpose map that maps the Hilbert column space Hc (a
right C∗-module over C, isometric to a Hilbert space H) onto the Hilbert row space
Hr (a right Hilbert C∗-module over K(H)) it is clear that we don’t always have
such a ∗-isomorphism.

Our main result, Theorem 3.2, shows that, if X and Y are full, T can always be
extended to an isometry of L(X) onto L(Y ).

The celebrated result of Kadison [K, Theorem 7] states that every unital isom-
etry of unital C∗-algebras is a selfadjoint Jordan map. For von Neumann algebras
we can, in fact, decompose the algebras as a direct sum of two summands. On one
summand the map is a ∗-isomorphism and on the other it is a ∗-anti-isomorphism
([K, Theorem 10]). A similar result was proved also for isometries of some non-
selfadjoint operator algebras ([S]). For an isometry T of self-dual C∗-modules over
von Neumann algebras we find that T can be written as a sum of an isometry which
is a module map (and preserves the inner product) and an isometry that is, in some
sense, an anti-module-map. (For a precise statement see Corollary 2.25.) The case
of (not necessarily self-dual) Hilbert C∗-modules over general C∗-algebras is similar
except that the decomposition of X is done by a projection in the enveloping von
Neumann algebra of L(X) (Theorem 3.2).

As a corollary we show that, if we assume that the isometry T is in fact a 2-
isometry (i.e., the map I⊗T : M2⊗X →M2⊗Y is an isometry), then T preserves
the C∗-module structure (Corollary 3.4). In particular, a 2-isometry of Hilbert
C∗-modules is necessarily a complete isometry.
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After this work was completed it was pointed out to us by D. Blecher that
M. Hamana had previously proved this last fact using different methods [Ha].

Also we show that, for a given Hilbert space H, Hc and Hr are the only Hilbert
C∗-modules that are isometric to H (Corollary 3.6).

Now we turn to set some notation and recall the definitions that we need.

Definitions. (1) A right pre-Hilbert C∗-module over a C∗-algebra A is a right-
module X equipped with a map 〈·, ·〉 : X ×X → A satisfying:

(i) 〈x, x〉 ≥ 0, x ∈ X , and 〈x, x〉 = 0 only if x = 0.
(ii) 〈x, y〉∗ = 〈y, x〉 , y, x ∈ X .
(iii) y 7−→ 〈x, y〉 is a linear map for all x ∈ X .
(iv) 〈x, ya〉 = 〈x, y〉 a, x, y ∈ X, a ∈ A.

(2) The norm on a pre-Hilbert C∗-module X over A is defined by ‖x‖ =
‖ 〈x, x〉 ‖ 1

2 . If X is complete with respect to this norm, then X is said to be
a (right) Hilbert C∗-module over A.

(3) A Hilbert C∗-module X over A is said to be full if

A = span{〈x, y〉 : x, y ∈ X}.
One can define left Hilbert C∗-module similarly. X is then a left A-module and

the inner product is assumed to be linear in the first entry. Also 〈ax, y〉 = a 〈x, y〉.
Given a right Hilbert C∗-module X over A we define X̄ , the conjugate module,

as follows. As a set we write X̄ = {x̄ : x ∈ X}. The linear structure is defined by
λx+ y = λ̄x̄+ ȳ. X̄ becomes a left A-module when we set

a · x̄ = xa∗

and the A-valued inner product is

〈x̄, ȳ〉 = 〈x, y〉 .
This makes X̄ a left Hilbert C∗-module over A.

From now on, unless we say otherwise, all Hilbert C∗-modules are assumed to
be right modules and full.

A bounded module map T : X → X (where X is a Hilbert C∗-module) is said
to be adjointable if there exists a map T ∗ : X → X with 〈Tx, y〉 = 〈x, T ∗y〉 for all
x, y in X . The set of all adjointable maps on X is a C∗-algebra (with respect to
the operator norm) and is denoted B(X).

Given X and Y in X we can define an adjointable operator x⊗ y∗ ∈ B(X) by

x⊗ y∗(z) = x 〈y, z〉 .
(Another notation frequently used for this operator is θx,y.) The C∗-subalgebra
generated by these operators will be written K(X). Elements of K(X) are some-
times referred to as “compact operators”. If H is a Hilbert space, viewed as a
C∗-module over C, then K(X) = K(H), the algebra of compact operators on H .
In general K(X) 6= B(X).

Given a Hilbert C∗-module X over A one can form

L(X) =
(
K(X) X
X̄ A

)
.

Then L(X) is a ∗-algebra with product and involution defined by(
K1 x1

ȳ1 a1

)(
K2 x2

ȳ2 a2

)
=

(
K1K2 + x1 ⊗ y∗2 K1x2 + x1a2

K∗2y1 + a1 · ȳ2 〈y1, x2〉+ a1a2

)
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and (
K x
ȳ a

)∗
=
(
K∗ y
x̄ a∗

)
.

There is also a natural action of L(X) on X ⊕ A which defines a norm on L(X)
making it a C∗-algebra. We shall refer to L(X) as the linking algebra of X .

A (right) Hilbert C∗-module X overA is said to be self-dual if for everyA-module
map

f : X → A

there is some y ∈ X such that f(x) = 〈y, x〉. Suppose now that X is a self-dual
Hilbert C∗-module over a von Neumann algebra M . Then X is a dual Banach
space (i.e. there is a Banach space X∗ such that X = (X∗)∗) and B(X) is a von
Neumann algebra. (See [P, Proposition 3.8 and Proposition 3.10].) In this case we
set

Lw(X) =
(
B (X) X
X̄ M

)
.

This is then a von Neumann algebra which we call the linking von Neumann algebra
of X . (See [B2].)

For more about Hilbert C∗-modules see [L2], [RW] and [P].

2. Isometries of self-dual modules

The main theorem in this section is the following.

Theorem 2.1. Let M,N be von Neumann algebras and p ∈ N, q ∈ N be projec-
tions such that each of the projections p, I−p, q and I−q has central support equal
to I. Let T : pM(I − p) → qN(I − q) be a surjective linear isometry. Then there
are central projections e1, e2 in M, f1, f2 in N with e1 + e2 = I and f1 + f2 = I and
there are maps

Ψ : e1Me1 → f1Nf1,

Φ : e2Me2 → f2Nf2

satisfying
(1) Ψ is a (surjective) ∗-isomorphism,

Φ is a (surjective) ∗-antiisomorphism.
(2) For x ∈ pM(I − p),

T (x) = Ψ(e1xe1) + Φ(e2xe2).

(3) Ψ(e1p) = f1q and Φ(e2p) = f2(I − q).

The proof will be divided into several lemmas and propositions. The final argu-
ments can be found following Corollary 2.23.

Note first that both pM(I − p) and qN(I − q) have a structure of a JB∗-triple
with {x, y, z} = 1

2 (xy∗z + zy∗x).
Since linear isometries preserve the triple product we have the following result

which is well known (see [Ka, Proposition 5.5] or [H, Theorem 4]).

Lemma 2.2. For x, y, z ∈ pM(I − p),
T (xy∗z + zy∗x) = T (x)T (y)∗T (z) + T (z)T (y)∗T (x)
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and, in particular,

T (xy∗x) = T (x)T (y)∗T (x).

Note that an element u ∈ pM(I − p) is a partial isometry if and only if it is a
tripotent (i.e. {u, u, u} = u); hence T (u) is also a partial isometry.

From now on we assume that M,N, p, q and T are as in assumptions of Theo-
rem 2.1.

Lemma 2.3. Suppose {zα}α∈Λ is an orthogonal family of central projections in M
with

∑
zα = I. Then there is an orthogonal family {cα}α∈Λ of central projections

in N with
∑
cα = I and such that, for every α ∈ Λ,

T
(
zαpM(I − p)zα

)
= cαqN(I − q)cα.

Proof. Suppose M ⊆ B(H) and N ⊆ B(K) for Hilbert spaces H,K. For each
α ∈ Λ write

c1α =
[
T
(
zαpM(I − p)zα

)
K
]
,

c2α =
[
T
(
zαpM(I − p)zα

)∗
K
]

(where [S] for a subspace S ⊆ K is the projection onto the closure of S). Clearly
c1α, c

2
α ∈ N . Also c1α ≤ q, c2α ≤ I − q (in particular c1αc

2
α = 0).

If u ∈ T
(
zαpM(I − p)zα

)
and v ∈ T

(
zβpM(I − p)zβ

)
are partial isometries and

α 6= β in Λ then T−1(u), T−1(v) are orthogonal; hence u and v are orthogonal.
Since pM(I − p) is spanned by its partial isometries we find that

T
(
zβpM(I − p)zβ

)∗
T
(
zαpM(I − p)zα

)
= 0.

It follows that

c1αc
1
β = 0, α 6= β,

and similarly

c2αc
2
β = 0, α 6= β.

We now set cα = c1α + c2α ∈ N and we find that {cα}α∈Λ is an orthogonal family of
projections in N . Now suppose y ∈ qN(I − q) satisfies c1αy = 0 for all α ∈ Λ. Then
T (zαx)∗y = 0 for all x ∈ pM(1− p). In particular

yT
(
zαT

−1(y)
)∗
y = 0.

Applying T−1 we get

T−1(y)
(
zαT

−1(y)
)∗
T−1(y) = 0.

Hence zαT−1(y)
(
zαT

−1(y)
)∗
zαT

−1(y) = 0; thus zαT−1(y) = 0 for all α ∈ Λ. As∑
zα = I, T−1(y) = 0 and, consequently, y = 0.
This proves that

∑
c1α = q (recall that the central support of I−q is I). Similarly∑

c2α = I − q. Hence
∑
cα = I. To show that each cα is in the center of N it

suffices to show that, for α 6= β

cαNcβ = 0.

To show that c2αNc
1
β = 0 we fix y ∈M , and x2, x1 ∈ pM(1− p) and compute

T (zαx1)y∗T (zβx2) + T (zβx2)y∗T (zαx1)

= T
(
zαx1T

−1((qy(I − q))
)∗
zβx2 + zβx2T

−1
(
(qy(I − q))

)∗
zαx1

)
= T (0 + 0) (as zαzβ = 0).
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Since c1αT (zαx1) = T (zαx1) while c1αT (zβx2) = 0, we get

T (zαx1)y∗T (zβx2) = 0

for all y ∈ N, x1, x2 ∈ pM(I − p). Hence

c2αNc
1
β = 0.

Now we turn to the proof of c1αNc1β = 0. We have to show that c1αqNqc1β = 0 and,
since qNq is the σ-weak closure of span of {ab∗ : a, b ∈ qN(I−q)}, we need to show
c1αab

∗c1β = 0 for all such a, b.
Write a = T (d) and b = T (g) and then compute, for x1, x2 ∈ pM(I − p),

T (zαx1)∗T (d)T (g)∗T (zβx2)

= T (zαx1)∗
[
T (d)T (g)∗T (zβx2) + T (zβx2)T (g)∗T (d)

]
= T (zαx1)∗T

(
dg∗zβx2 + zβx2g

∗d
)

= T (zαx1)∗c1αc
1
βT
(
zβdg

∗x2 + zβx2g
∗d
)

= 0.

Hence c1αNc1β = 0.
Thus cαNcβ = 0 for all α 6= β; i.e., cα ∈ Z(N). �

Lemma 2.4. Let {zα}α∈Λ be an orthogonal family of central projections of M with∑
zα = I. Let {cα} be as Lemma 2.3. Suppose that, for every α ∈ Λ, Theorem 2.1

holds for zαM, cαN and the restriction of T to zαpM(I − p)zα, in place of M,N
and T . Then it holds for M,N, T.

Proof. From the conclusion of Theorem 2.1, applied to zαM and cαN , we get projec-
tions e1,α, e2,α, f1,α, f2,α and maps Ψα,Φα. Setting ei =

∑
ei,α, fi =

∑
fi,α, Ψ =∑⊕

Ψα and Φ =
∑⊕

Ψα we obtain the conclusion of the theorem for M,N . �

Lemma 2.5. There is an orthogonal family of central projections {zα : α ∈ Λ} in
M with

∑
zα = I such that, for each α ∈ Λ, either

(1) zαp and zα(I − p) are abelian projections in M or
(2) There is a family {ui : i ∈ I}, of cardinality |I| ≥ 2, of partial isometries in

zαpM(I − p)zα satisfying
(i) u∗i ui = u∗juj for all i, j ∈ I,
(ii) uiu

∗
i uju

∗
j = 0 for all i 6= j in I,

(iii)
∑
uiu
∗
i = pzα

or
(3) There is a family {ui : i ∈ I}, of cardinality |I| ≥ 2, of partial isometries in

zαpM(1− p)zα satisfying
(i′) uiu

∗
i = uju

∗
j for all i, j ∈ I,

(ii′) u∗i uiu
∗
juj = 0 for all i 6= j in I,

(iii′)
∑
u∗i ui = zα(I − p).

Proof. Since M can be written as a direct sum of algebras of different types we can
deal with each type separately. Recall that for a projection g, c(g) is its central
support.
Case 1: M is of type III.
Then we can write p = p1 + p2 with p1 ∼ p2. Since c(p1) = c(p2) = c(p) = I =
c(I − p) and p1, I − p are both properly infinite, p1 ∼ I − p, i = 1, 2. Hence there
are u1, u2 in M such that uiu∗i = pi, u

∗
i ui = I − p, i = 1, 2, and we are done.
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Case 2: M is of type I.
In this case there is an abelian projection e1 ∈ M with c(e1) = I. Since c(e1) ≤
c(I − p) (= I), we have e1 - I − p ([KR, Proposition 6.4.6]) and, thus, there is an
abelian projection e ≤ I − p with c(e) = I. It now follows [KR, Corollary 6.5.5]
that there is a family {qj : 1 ≤ j ≤ ∞} of central projections with

∑
qj = I

and such that qjp is the sum of j equivalent abelian projections qjp =
j∑
i=1

qjpi.

As c(qjpi) = c(qjp) = qj = c(qje) we have qjpi ∼ qje for all i ≤ j. Hence for
each algebra qjMqj with j ≥ 2 statement (2) holds. We are left to deal with the
case q1. So we assume now that p is abelian. If I − p is not abelian we can use
a similar argument to the one above (interchanging the roles of p and I − p) and
get statement (3). We are left with the case where both p and I − p are abelian
projections and this is (1).
Case 3: M is of type II.
By splitting M using central projections we can assume that each of the projections
p and I − p are either finite or properly infinite.

If I−p is properly infinite we can argue as in the type III case: p = p1 +p2, p1 ∼
p2 - I − p and, thus, there are u1, u2 with pi = uiu

∗
i , u

∗
1u1 = u∗2u2 ≤ I − p; hence

statement (2) holds. If p is properly infinite we reverse the roles of p and I − p and
get statement (3). So we assume that both p and I − p are finite (thus we are in
the type II1 case). In this case we let ∆ be the center-valued dimension function,
defined on the projections of M with range equal to the set of all positive operators
in the unit ball of the center (see [KR, § 8.4]).

For every j ≥ 2 we can let qj be the maximal central projection satisfying
1
j qj∆(p) ≤ qj∆(I − p), and q0 = I −

∨
qj . But, for every j ≥ 2,

q0∆(I − p) ≤ q0
1
j

∆(p) ≤ 1
j
qo.

Hence q0∆(I − p) = 0 and ∆(q0(I − p)) = 0 implying that q0(I − p) = 0. But

c(q0(I−p)) = q0c(I−p) = q0; hence q0 = 0 and I =
∞∑
j=2

(qj− qj−1) (setting q1 = 0).

Given j ≥ 2,
1
j

(qj − qj−1)∆(p) ≤ (qj − qj−1)∆(I − p).

Restricting our attention to the algebra (qj − qj−1)M(qj − qj−1) we can write
1
j ∆(p) ≤ (I − p). Thus we can write p as a sum of j equivalent subprojections
p =

∑
pi with pi - I − p; hence pi ∼ e ≤ I − p for all i ≤ j. This shows that, in

this case, (2) holds. �
Lemma 2.6. If M,N, T are as in Theorem 2.1 and, in addition, p and I − p are
abelian projections in M , then Theorem 2.1 holds.

Proof. Since p and I − p are abelian projections, M is ∗-isomorphic to M2 ⊗ A
where A is an abelian von Neumann algebra and M2 is the algebra of 2×2 complex
matrices. We assume now that M = M2 ⊗A. Write u = e12 ⊗ I (where {eij} are
the matrix units in M2) and v = T (u). Given a ∈ A we have

T (e12 ⊗ a) = T
(
(e12 ⊗ I)(e12 ⊗ a∗)∗(e12 ⊗ I)

)
= vT (e12 ⊗ a∗)∗v.

Then qN(1 − q) = T (e12 ⊗A) = vT (e12 ⊗A)∗v. Hence q ≤ vv∗ and I − q ≤ v∗v.
But v ∈ qN(1− q) so that q = vv∗, I − q = v∗v.
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Now write

ψ1,1(a) = T (e12 ⊗ a)v∗ ∈ qN(1− q)v∗ = qNq, a ∈ A.
ψ1,1 maps I into vv∗ = q and it is an isometry onto the von Neumann algebra qNq.
By [K, Theorem 10] this map is a ∗-isomorphism (using the fact that A is abelian).
Hence qNq is abelian. Similarly one sees that I − q is also an abelian projection.

We now have, for a, b, c ∈ A,

T (e12 ⊗ a)v∗T (e12 ⊗ b) = T (e12 ⊗ a)v∗T (e12 ⊗ b)v∗v
= ψ11(a)ψ11(b)v = ψ11(ab)v = T (e12 ⊗ ab),

T (e12 ⊗ b)T (e12 ⊗ c∗)∗ = ψ11(b)v[ψ11(c∗)v]∗ = ψ11(b)vv∗ψ11(c∗)∗

= ψ11(b)ψ11(c) = T (e12 ⊗ bc)v∗,
and, using similar identities we see that the map

ψ : M → N

defined by

ψ

(
a b
c d

)
=

(
T (e12 ⊗ a)v∗ T (e12 ⊗ b)
T (e12 ⊗ c∗)∗ v∗T (e12 ⊗ d)

)
is a ∗-isomorphism of M onto N extending T . This completes the proof of Theo-
rem 2.1 in this case. (Here e1 = I, e2 = 0.) �

From now on, in this section, we assume that condition (2) of Lemma 2.5 holds
(with zα = I).

We fix the family {ui} as in Lemma 2.5 and write vi for T (ui) ∈ qN(1 − q).
Then vi is a partial isometry and we write

ri = viv
∗
i (≤ q), di = v∗i vi(≤ I − q).

Now fix i 6= j. We wish to study the relative position of vi and vj .
We have

vi = T (uiu∗i ui) = T (uiu∗juj) = T (uiu∗juj + uju
∗
jui)

= viv
∗
j vj + vjv

∗
j vi = vidj + rjvi.

It then follows that rjvidj = 0. Since we can interchange i and j we get

vi = vidj + rjvi and rjvidj = 0,
vj = vjdi + rivj and rivjdi = 0,

and, thus,

ri = viv
∗
i = (vidj + rjvi)(djv∗i + v∗i rj) = vidjv

∗
i + rjrirj .

But then rjrirj ≤ ri and, consequently (I−ri)rjrirj(I−ri) = 0 which implies that
rirj = rirjri and rirj = rjri. Similar analysis works for di, dj and we find that

rirj = rjri, didj = djdi.

The computation above now shows that

ri = vidjv
∗
i + rirj

and similarly

di = v∗i rjvi + didj .
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We summarize as follows.

Lemma 2.7. With the notation and assumptions above, for i 6= j,
(1) vi = vidj + rjvi = (I − rj)vidj + rjvi(I − dj),
(2) vj = vjdi + rivj = (I − ri)vjdi + rivj(I − di),
(3) rjvidj = rivjdi = 0,
(4) rirj = rjri, didj = djdi,
(5) vidjv

∗
i = ri(I − rj)

and
(6) v∗i rjvi = di(I − dj). �

Lemma 2.8. With the notation and assumption above we have for every triple
{i, j, k} of different indices,

(1) didj(I − dk) = 0,
and

(2) rirj(I − rk) = 0.
Consequently, if we write r for

∨
{ri : i ∈ I} and r0 for

∧
{ri : i ∈ I}, then

{ri − r0 : i ∈ I} is an orthogonal family of projections with sum equal to r − r0.
Similar statement holds for {di − d0}.

Proof. For every a ∈ uiMu∗i we have

auiu
∗
juk + uku

∗
jaui = 0 (as u∗juk = 0 = u∗jui).

Thus

T (aui)v∗j vk + vkv
∗
jT (aui) = 0.(∗)

Now set

a = uiu
∗
iT
−1
(
rj(I − rk)vi

)
u∗i ∈ uiMu∗i .

Then

T (aui) = T
(
uiu
∗
iT
−1(rj(I − rk)vi)u∗i ui

)
= viT

(
uiT

−1(rj(I − rk)vi)∗ui
)∗
vi

= vi
[
vi(v∗i rj(I − rk))vi

]∗
vi

= rirj(I − rk)vi.

Using (∗) we have

rirj(I − rk)viv∗j vk + vkv
∗
j rirj(I − rk)vi = 0.

Multiplying on the left by vjv∗k we get

vjv
∗
krirj(I − rk)viv∗j vk + vjdkv

∗
j rirj(I − rk)vi = 0.

As v∗k(I−rk) = 0, the first term vanishes. From Lemma 2.7 we know that vjdkv∗j =
rj(I − rk); hence rj(I − rk)rirj(1− rk)vi = 0.

It follows that rirj(I − rk) = 0. Statement (1) is proved similarly and the final
statement of the lemma follows immediately. �

Lemma 2.9. (1) For a ∈ pM(I − p) and a partial isometry u ∈ pM(I − p),
T (uu∗au∗u) = vv∗T (a)v∗v

where v = T (u).
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(2) For a partial isometry u ∈ pM(I − p) with T (u) = v,

T (u∗Mu∗u) = vv∗Nv∗v.

(3) If x, y ∈ pM(I − p) and x∗y = yx∗ = 0, then

T (x)∗T (y) = 0 = T (y)T (x)∗.

Proof. (1) T (uu∗au∗u) = vT (ua∗u)∗v = v[vT (a)∗v]∗v = vv∗T (a)v∗v.
(2) From (1) it follows that

T (uu∗Mu∗u) ⊆ vv∗Nv∗v.
Applying the same argument to T−1 we get equality.

(3) Let x, y ∈ pM(I − p) satisfy x∗y = yx∗ = 0. Let x = u1|x| be the polar
decomposition of x and y = u2|y| be the one for y. Then u∗1u2 = u2u

∗
1 = 0.

If we write vi = T (ui) then

0 = T (u1u
∗
1u2 + u2u

∗
1u1) = v1v

∗
1v2 + v2v

∗
1v1

and

0 = T (u1u
∗
2u1) = v1v

∗
2v1.

hence

v∗1v2 = v∗1v1v
∗
1v2 + (v∗1v2v

∗
1)v1

= v∗1(v1v
∗
1v2 + v2v

∗
1v1) = 0.

Similarly v2v
∗
1 = 0.

Since x ∈ u1u
∗
1Mu∗1u1, y ∈ u2u

∗
2Mu∗2u2, part (1) shows that

T (x) ∈ v1v
∗
1Nv

∗
1v1, T (y) ∈ v2v

∗
2Nv

∗
2v2.

As v2v
∗
1 = v∗1v2 = 0,

T (x)∗T (y) = 0 = T (y)T (x)∗. �
Lemma 2.10. If u is a partial isometry in pM(I − p), v = T (u) and e is a
projection satisfying e ≤ vv∗, then there is a projection e0 ≤ uu∗ with T−1(ev) =
e0u.

Proof. Write v′ = ev, v′′ = (vv∗ − e)v. Both are partial isometries and they satisfy
v′v′′∗ = v′′v′∗ = 0. Hence (Lemma 2.9), the partial isometries u′ = T−1(v′) and
u′′ = T−1(v′′) satisfy 0 = u′u′′∗ = u′′u′∗. Since u′+u′′ = T−1(v′+v′′) = T−1(v) = u
the conclusion follows. �
Lemma 2.11. For all i, j ∈ I, rj commutes with the elements in riNri.

Proof. For i = j it is clear, so assume i 6= j. Since riNdi = T (uiu∗iMu∗iui)
(Lemma 2.9 (2)),

riNri = riNdiv
∗
i = T (uiu∗iMu∗i ui)v

∗
i .

So fix x = uiu
∗
i xu

∗
i ui and compute (using the fact that uju∗juiu

∗
i = 0 and u∗juj =

u∗iui).

T (x) = T (xu∗i ui) = T (xu∗juj + uju
∗
jx) = T (x)v∗j vj + vjv

∗
jT (x)

= T (x)dj + rjT (x).

Hence

T (x) = (I − rj)T (x)dj + rjT (x)(I − dj).
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T (x)v∗i rj = T (x)v∗i rjviv
∗
i = T (x)di(I − dj)v∗i

= rjT (x)di(1− dj)v∗i .

Hence, for every y ∈ riNri, yrj = rjyrj and the claim follows. �

Our next objective is to show that, for i 6= j and for x, y, z in uiMui,
ri(I − rj)T (xy∗z) = ri(I − rj)T (x)T (y)∗T (z). This will be proved in Proposi-
tion 2.13.

We first consider the map

ϕ : uiu∗iMuiu
∗
i → viv

∗
iNviv

∗
i

defined by

ϕ(uiu∗i xuiu
∗
i ) = T (uiu∗ixui)v

∗
i .

Since T (uiu∗iMui) = riNdi (Lemma 2.9), the map ϕ is a surjective isometry from
the von Neumann algebra uiu∗iMuiu

∗
i onto the von Neumann algebra riNri that

is unital
(
ϕ(uiu∗i ) = ri

)
. By [K, Theorem 10] there are central projections g, h in

riNri and central projections g0, h0 in uiu∗iMuiu
∗
i with g+ h = ri, g0 + h0 = uiu

∗
i

and such that ϕ, restricted to g0Mg0, is a ∗-isomorphism onto gNg and ϕ, restricted
to h0Mh0, is a ∗-anti-isomorphism of h0Mh0 onto hNh.

Lemma 2.12. With the notation above, h(I−rj) is an abelian projection in riNri.

Proof. Since h ∈ riNri it follows from Lemma 2.11 that h(I− rj) is a projection in
riNri. Write c = h(I−rj). To show that cNc is abelian it suffices to show that one
cannot find in cNc projections e1, e2 that are equivalent (in cNc) and orthogonal
(i.e. e1e2 = 0). Assume, by negation, that there are such projections. Then there
is a partial isometry w ∈ cNc with

ww∗ = e2, w∗w = e1.

Write

t1 = e1vi, t2 = vjv
∗
i e1vi, t3 = wvi

and set si = T−1(ti). Then ti and si are partial isometries. We have t∗1t1 =
v∗i e1v1, t

∗
2t2 = v∗i e1viv

∗
j vjv

∗
i e1vi and t∗3t3 = v∗i w

∗wvi = v∗i e1vi. Since

v∗i e1vi ≤ v∗i cvi ≤ v∗i (I − rj)vi = didj ≤ dj ,

(using Lemma 2.7), we have

t∗i ti = v∗i e1vi, i = 1, 2, 3.

Also, t1t∗1 = e1, t2t
∗
2 = vjv

∗
i e1viv

∗
j ≤ rj and t3t

∗
3 = wviv

∗
iw
∗ = e2 ≤ I − rj . Hence

{tit∗i : i = 1, 2, 3} is an orthogonal set.
By Lemma 2.10, there are projections c1 ≤ uiu∗i and c2 ≤ uju∗j with

s1 = c1ui, s2 = c2uj .

Now, by the definition of h, the map

ϕ(x) = T (xui)v∗i , x ∈ h0Mh0,
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is a ∗-anti-isomorphism. Hence

T (s3s
∗
1s1) = ϕ(s3s

∗
1s1u

∗
i )vi = ϕ

(
(s3u

∗
i )(uis

∗
1)(s1u

∗
i )
)
vi

= ϕ(s1u
∗
i )ϕ(s1u

∗
i )
∗ϕ(s3u

∗
i )vi

= ϕ(s1u
∗
i )viv

∗
i ϕ(s1u

∗
i )
∗ϕ(s3u

∗
i )vi

= T (s1)T (s1)∗T (s3) = t1t
∗
1t3 = 0.

Hence s3s
∗
1 = 0.

We can use Lemma 2.8 and Lemma 2.7 for {t1, t2, t3} and T−1 in place of
{vi, vj , vk} and T (since they also have pairwise orthogonal ranges and the same
initial space). Since s∗3s3s

∗
1s1 = 0 (by the computation above) it follows from

Lemma 2.8 (1) that s∗2s2s
∗
1s1 = s∗2s2s

∗
3s3s

∗
1s1 = 0 and, similarly, s∗2s2s

∗
3s3 = 0. So

that {s∗i si} is an orthogonal family. By Lemma 2.7 (5) (applied to the situation
here) we get for i 6= j in {1, 2, 3}, sis∗i (I − sjs∗j ) = sis

∗
jsjs

∗
i = 0.

We conclude that sis∗i = sjs
∗
j for all i, j in {1, 2, 3}. But s1s

∗
1 ≤ uiu

∗
i (as

s1 = c1ui) and s2s
∗
2 ≤ uju∗j ≤ I − uiu∗i .

This is a contradiction and it completes the proof. �

Proposition 2.13. For x, y, z in uiMui and j 6= i,

ri(I − rj)T (xy∗z) = ri(I − rj)T (x)T (y)∗T (z).

Proof. Fix x, y, z in uiMui and write

ri(I − rj)T (xy∗z) = ri(I − rj)hT (xy∗z) + ri(I − rj)gT (xy∗z)

where g, h are defined above. With ϕ as above we have

(I − rj)hT (xy∗z) = (I − rj)hϕ(xy∗zu∗i )vi.

Since ϕ(xy∗zu∗i ) lies in riNri, we can use Lemma 2.11 and Lemma 2.7 to get
(I − rj)ϕ(xy∗zu∗i )vi = ϕ(xy∗zu∗i )(I − rj)vi = ϕ(xy∗zu∗i )viv

∗
i (I − rj)vi. Hence,

by the definition of h, (I − rj)hT (xy∗z) = (I − rj)hϕ(xy∗zu∗i )hri(I − rj)vi =
(I − rj)hϕ(zu∗i )ϕ(yu∗i )

∗ϕ(xu∗i )hri(I − rj)vi. But since (I − rj)h is an abelian pro-
jection in riNri (Lemma 2.12) we have

(I − rj)hT (xy∗z) = (I − rj)hϕ(xu∗i )ϕ(yu∗i )
∗ϕ(zu∗i )hri(I − rj)vi

= (I − rj)hT (x)v∗i viT (y)∗T (z)v∗i hri(I − rj)vi
= (I − rj)hT (x)T (y)∗T (z).

Also, from the definition of g,

(I − rj)gT (xy∗z) = (I − rj)gϕ(xy∗zu∗i )vi
= (I − rj)gϕ(xu∗i )ϕ(yu∗i )

∗ϕ(zu∗i )vi
= (I − rj)gT (x)T (y)∗T (z).

This completes the proof. �

We now turn to define a map

θ : pMp→ N.

For if we note first that p =
∑
uiu
∗
i and every x ∈ pMp, x =

∑
i,j

uiu
∗
i xuju

∗
j (σ-

weakly). For every i, j ∈ I we set

θij : uiu∗iMuju
∗
j −→ N
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by

θij(uiu∗ixuju
∗
j ) = (ri − r0)T (uiu∗i xuj)v

∗
j + v∗jT (uiu∗i xuj)(di − d0),

where r0 =
∧
ri, d0 =

∧
di.

To study the map θ defined by {θij} we first write

αij(uiu∗i xuju
∗
j) = (ri − r0)T (uiu∗ixuj)v

∗
j

and

βij(uiu∗ixuju
∗
j ) = v∗jT (uiu∗i xuj)(di − d0).

Also write, for every finite subset F ⊆ I, pF =
∑

i∈F uiu
∗
i , rF =

∑
i∈F ri, dF =∑

i∈F di and

x(F ) = pFxpF (for x ∈ pMp)

and αF : pFMpF → N is defined by

αF (pFxpF ) =
∑
i,j∈F

αij(uiu∗i xuju
∗
j ).

(Similarly, βF can be defined.) We have αF (pFMpF ) ⊆ (rF − r0)N(rF − r0) and
if F1 ⊆ F2, x ∈ N ,

αF1(pF1xpF1) = (rF1 − r0)αF2(pF2xpF2)(rF1 − r0).

Lemma 2.14. Given a finite subset F ⊆ I, αF is a ∗-homomorphism of pFMpF
onto (rF − r0)N(rF − r0) and βF is a ∗-antihomomorphism of pFMpF onto
(dF − d0)N(dF − d0).

Proof. We prove the properties of αF . The proof for βF is similar.
For i, j ∈ I, uiu∗iMuj = uiu

∗
iMuju

∗
i ui ⊆ uiu∗iMu∗iui = uiu

∗
iMu∗juj⊆uiu∗iMuj.

Hence uiu∗iMuj = uiu
∗
iMu∗i ui and T (uiu∗iMuj) = riNdi. Hence T (uiu∗iMuj)v∗j =

riNdiv
∗
j . For i = j this is riNri and, thus, αii(uiu∗iMuiu

∗
i ) = (ri − r0)Nri =

(ri − r0)N(ri − r0) (as I − r0 commutes with riNri by Lemma 2.11).
For i 6= j

αij(uiu∗iMuju
∗
j ) = (ri − r0)Ndiv∗j = (ri − r0)Nv∗j (vjdiv∗j ) = (ri − r0)Nv∗j (I − ri).

As rj(I − ri) = rj − r0 (Lemma 2.8) we see that αij is onto (ri − r0)N(rj − r0).
This shows that αF maps pFMpF onto (rF − r0)N(rF − r0).

We now show that αF is a ∗-map. For that, fix x = uiu
∗
i xuju

∗
j and consider

αij(x) = (ri − r0)T (xuj)v∗j = (ri − r0)T (xuj)v∗j (rj − r0).

If i = j we have

αii(x) = (ri − r0)T (uiu∗ixui)v
∗
i (ri − r0)

= (ri − r0)viT (x∗ui)∗viv∗i (ri − r0)

=
[
(ri − r0)T (x∗ui)v∗i (ri − r0)

]∗
= αii(x∗)∗.

If i 6= j we have T (uiu∗ixuj) = T (uiu∗i xuj+uju
∗
ixui) = viT (x∗ui)∗vj+vjT (x∗ui)∗vi.

Hence

αij(x) = (ri − r0)
[
viT (x∗ui)∗vj + vjT (x∗ui)∗vi

]
v∗j (rj − r0).
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Since (ri − r0)vj = 0 we have

αij(x) = (ri − r0)viT (x∗ui)∗(rj − r0) = αji(x∗)∗.

This shows that αF is a ∗-map.
Finally, we shall show that αF is a homomorphism. For that we fix

x = uiu
∗
i xuku

∗
k, y = uju

∗
jyumu

∗
m.

If k 6= j, then xy = 0. In this case rk(rj − r0) = 0 and αF (x)αF (y) =
(ri − r0)T (xuk)v∗k(rj − r0)T (yum)v∗m = 0. So we suppose now that k = j and
then xy = uiu

∗
i xuju

∗
jyumu

∗
m. Hence αF (xy) = (ri − r0)T (xyum)v∗m. If i 6= j this

is equal to

(ri − r0)T
(
(xuj)u∗j (yum)

)
v∗m = (ri − r0)T

[
(xuj)u∗j (yum) + yumu

∗
jxuj

]
v∗m

= (ri − r0)
[
T (xuj)v∗jT (yum) + T (yum)v∗jT (xuj)

]
v∗m.

Now T (yum) = T (yumu∗juj) ∈ rjNdj and (ri − r0)T (yum) = 0. Hence

αF (xy) = (ri − r0)T (xyj)v∗jT (yum)v∗m = αF (x)αF (y).

Now consider the case i = j. Then

αF (xy) = (ri − r0)T
(
(xui)u∗i (yum)

)
v∗m.

Since yum = uiu
∗
i yumu

∗
iui ∈ uiMui and xui, ui also lie in uiMui, we can apply

Proposition 2.13 and get

αF (xy) = (ri − r0)T (xui)v∗i T (yum)v∗m = αF (x)αF (y). �
It follows from Lemma 2.14 that for each finite subset F ⊆ I and each x ∈ pMp

‖αF (x)‖ ≤ ‖x‖.
Hence, for a fixed x ∈ pMp the net {αF (x) : F ⊆ I} is bounded and we can find a
σ-weakly convergent subset αF ′(x) −→ α(x).

For every finite subset F ⊆ I there is some F ′0 in the subnet with F ′0 ⊇ F . But
then, for every F ′ ⊇ F ′0, rFαF ′(x)rF = αF (x); hence

rFα(x)rF = αF (x)

and, consequently.

α(x) = σ-weak lim
F
αF (x).

We can now conclude from Lemma 2.14 the following. (The statement for β is
proved similarly.)

Corollary 2.15. There is a surjective ∗-homomorphism

α : pMp→ (r − r0)N(r − r0)

and a surjective ∗-antihomomorphism

β : pMp→ (d− d0)N(d− d0)

such that, for all i, j,

riα(x)rj = αij(x), djβ(x)di = βij(x).

Lemma 2.16. For x ∈ pM(I − p) and i, j ∈ I we have ri(I − rj)T (uju∗jx) = 0.
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Proof. We can assume i 6= j and x = uju
∗
jx. Write x = x1 + x2 where x1 = xu∗juj

and x2 = x(I−u∗juj). Then x1 ∈ ujAuj and, thus, T (x1) ∈ vjNvj = rjNdj . Hence
(I − rj)T (uju∗jx1) = 0. For x2 we have uiu∗i x2 = x2u

∗
i ui = 0 (as u∗iui = u∗juj).

Hence 0 = T (uiu∗i x2 + x2u
∗
i ui) = viv

∗
i T (x2) + T (x2)v∗i vi = riT (x2) + T (x2)di. We

also have uix∗2ui = 0; hence viT (x2)∗vi = 0. Therefore

riT (x2) = riT (x2)di + riT (x2)(I − di)
= riT (x2)di +

[
riT (x2) + T (x2)di

]
(I − di) = 0.

Note that a similar argument shows that

T (x2)di = 0. �

Lemma 2.17. For x ∈ uju∗jM(I − p), y ∈ uiu∗iMui,

ri(I − r0)T (y)v∗jT (x) = ri(I − r0)T (yu∗jx).

Proof. Assume first that i 6= j. Then it follows from Lemma 2.16 that
ri(I − r0)T (x) = 0. Also we have xu∗jy = 0. Hence

ri(I − r0)T (yu∗jx) = ri(I − rj)T (yu∗jx+ xu∗jy)

= ri(I − rj)
[
T (y)v∗jT (x) + T (x)v∗jT (y)

]
= ri(I − rj)T (y)v∗jT (x).

Now consider the case i = j. if x ∈ uiu
∗
iMu∗i ui the result follows from Propo-

sition 2.13. So assume now that x = uiu
∗
i x(I − u∗iui). Then xu∗i y = 0 and

riT (x)v∗i = riT (x)div∗i = T (uiu∗i xu
∗
i ui)v

∗
i = 0 (where we used Lemma 2.9). Hence

riT (yu∗ix) = riT (yu∗ix+ xu∗i y)
= ri

[
T (y)v∗i T (x) + T (x)v∗i T (y)

]
= riT (y)v∗i T (x). �

Corollary 2.18. For every i, j, k if a = uiu
∗
i auju

∗
j and x = uku

∗
kx(I − p), then

(r − r0)T (ax) = αij(a)T (x).

Proof. Assume first that j 6= k. Then ax = 0. Also αij(a) ∈ (ri−r0)N(rj−r0) (see
the proof of Lemma 2.14) and (rj − r0)T (x) = rj(I − rk)T (x) = 0 by Lemma 2.16.
Hence αij(a)T (x) = 0. We now consider the case j = k. In this case αij(a)T (x) =
(ri−r0)T (auj)v∗jT (x) and Lemma 2.17 (with y = auj ∈ uiu∗iMu∗juj = uiu

∗
iMu∗iui)

applies to give

αij(a)T (x) = ri(I − r0)T (auju∗jx) = ri(I − r0)T (ax).

As (r − ri)T (ax) = 0 (Lemma 2.16), we are done. �

Before we conclude from the last corollary that T is a module map we need the
following.

Lemma 2.19.
(1) θ(= α+ β) is an injective map.
(2) α and β are σ-weakly continuous maps on pMp.
(3) There are projections g1, g2 in Z(pMp) such that

(i) g1 + g2 = p,
(ii) kerα = g2Mg2 and kerβ = g1Mg1,
(iii) if c(gi) is the central support of gi in M , then c(g1) + c(g2) = I.
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Proof. (1) Recall that for every i, j ∈ I,

θ(uiu∗i xuju
∗
j ) = (ri − r0)T (uiu∗i xuj)v

∗
j (rj − r0)

+ (dj − d0)v∗jT (uiu∗i xuj)(di − d0).

Since {ri − r0} and {di − d0} are orthogonal families, it will suffice to show the
injectivity of θij

(
= θ|uiu∗iMuju

∗
j

)
for all i, j ∈ I.

So fix i, j ∈ I and x = uiu
∗
i xuju

∗
j such that

(ri − r0)T (uiu∗i xuj)v
∗
j (rj − r0) = 0 = (dj − d0)v∗jT (uiu∗i xuj)(di − d0).

From Lemma 2.7 we get vj(dj − d0)v∗j = r0 and v∗j (rj − r0)vj = d0 and we have

(ri − r0)T (uiu∗ixuj)d0 = 0 = r0T (uiu∗i xuj)(di − d0).

Also, fix k 6= i, and compute

r0T (uiu∗ixuj)d0 = rkT (uiu∗ixuj)dk = T (uku∗kuiu
∗
ixuju

∗
kuk) = 0

(using Lemma 2.9).
Now we will show that (ri− r0)T (uiu∗i xuj)(di− d0) = 0. It will then follow that

T (uiu∗i xuj) = 0 (as it lies in riNdi by Lemma 2.9) and consequently, uiu∗i xuj = 0
implying x = 0.

Fix k 6= i and note that

(ri − r0)T (uiu∗ixuj)(di − d0) = (ri − r0)T (uiu∗i xuj)virkv
∗
i ∈ (ri − r0)Nrirkv∗i .

But the last set is {0} since rk commutes with riNri (Lemma 2.11) and rk(ri−r0) =
0.

(2) β is a map onto (d − d0)N(d − d0) and α is onto (r − r0)N(r − r0). Since
d− d0 and r− r0 are orthogonal projections, we can view N as acting on a Hilbert
space H with two orthogonal subspaces H1 = (d− d0)(H) and H2 = (r − r0)(H).
Let τ : B(H1)→ B(H1) be a transpose map, then α⊕ τ ◦ β is a ∗-isomorphism of
pMp into B(H). Thus it is σ-weakly continuous and so are its compressions to H1

and H2; i.e. α and β are σ-weakly continuous.
(3) Since α, β are σ-weakly continuous their kernels are σ-weakly closed ideals

in pMp and the existence of projections g1, g2 in the center of pMp and satisfying
(ii) follows. We now turn to proving (i). Since θ = α + β is injective, g1g2 = 0.
So we write h = p − (g1 + g2) and claim that h = 0. Write, for i ∈ I, ũi = hui
and ṽi = T (ũi) and note that Lemma 2.7 and Lemma 2.8 apply to ũi, ṽi in place
of ui, vi (since {ũiũ∗i } is an orthogonal family and ũ∗i ũi = ũ∗j ũj for all i, j). We
also write r̃i = ṽiṽ

∗
i , di = ṽ∗i ṽi. Using Lemma 2.10 applied to T−1, we find that

ṽi = cvi for some projection c ≤ viv∗i = ri and thus r̃i ∈ riNri and, by Lemma 2.11,
r̃i commutes with all rj . In particular r̃ir0 = r0r̃i, i ∈ I.

Now r0ṽi = ṽiṽir0ṽi ∈ r̃iNd̃i = T (huiu∗iMu∗iui) and we can find a = uiu
∗
i au
∗
iui

such that r0ṽi = T (ha). Hence

α(hau∗i ) = (ri − r0)T (ha)v∗i = (ri − r0)r0ṽiṽ
∗
i = 0.

But α, restricted to hMh is injective. Hence hau∗i = 0 and also ha = 0 and
r0ṽi = T (ha) = 0. But then r0r̃i = 0 for all i; i.e. r̃i ≤ ri − r0 and it follows that
r̃ir̃j = 0 for all i 6= j. Similar argument shows that d̃id̃j = 0, i 6= j. For a given
i ∈ I and j 6= i,

r̃i = r̃i(I − r̃j) = ṽid̃j ṽ
∗
i = ṽid̃j d̃iṽ

∗
i = 0.
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But then ṽi = 0 and, thus, hui = 0 for all i ∈ I. This shows that h = 0 and we are
done.

It is now left to prove (iii): c(g1) + c(g2) = I. But since g1 + g2 = p and c(p) = I
and gi ∈ Z(pMp) it is obvious. �

Because of Lemma 2.4 it will suffice now, in order to prove Theorem 2.1 to
restrict our attention to the cases c(g1) = I and c(g2) = I. Since the proof is
similar in these cases we now assume c(g1) = I (i.e. g2 = c(g2) = 0).

Lemma 2.20. When c(g1) = I (with g1 as in Lemma 2.19) we have, for all a ∈
pMp and x ∈ pM(I − p),

T (ax) = α(a)T (x).

Moreover, we have now r0 = 0, α is a ∗-isomorphism of pMp onto rNr and T
maps pM(I − p) onto rN(I − r) (i.e. r = q).

Proof. Now, that g2 = 0, α is injective and, thus, a ∗-isomorphism onto
(r − r0)N(r − r0). But then we can repeat the argument of the proof of Lemma
2.19(3)(ii) (with p replacing h) to show that r0vi = 0 for all i. hence r0 = 0 and α
maps onto rNr. Now fix x ∈ pM(I − p) with x = uiu

∗
i x. Write x = x1 + x2 with

x1 = uiu
∗
i xu

∗
i ui and x2 = uiu

∗
i x(I − u∗i ui). We have T (x1) ∈ T (uiu∗iMu∗iui) =

riNdi (Lemma 2.9) and T (x2) = T
(
uiu
∗
i x2 + x2u

∗
i ui
)

= riT (x2) + T (x2)di. How-
ever, for all j 6= i, x2u

∗
j = 0 (as u∗juj = u∗i ui) and u∗jx2 = 0 (as uju∗juiu

∗
i = 0);

hence (Lemma 2.9(3)) T (x2)v∗j = 0 and also T (x2)dj = T (x2)v∗j vj = 0. But dj = di
(as dj(I − di) = v∗j rivj = v∗j r0vj = 0) and we conclude that

T (x2) = riT (x2) ⊆ rN.
Hence T (pM(I − p)) ⊆ rN . But T (pM(I − p)) = qN(I − q); hence qN(I − q) ⊆
rN while r ≤ q. If r 6= q then it follows from the fact that c(I − q) = I that
(q − r)N(I − q) 6= 0 but this contradicts qN(I − q) ⊆ rN and we get q = r.

We then conclude, from Corollary 2.18, that, given i, j, k in I, a ∈ uiu∗iMuju
∗
j

and x ∈ uku∗kM(I − p), we have

T (ax) = α(a)T (x).

This equality then holds for finite sums of such a, x. Since T is σ-weakly continuous
by [Ho, Corollary 3.22] and α is σ-weakly continuous the equality holds for all
a ∈ pMp and x ∈ pM(I − p). �

Corollary 2.21. Assume c(g1) = I. For all x, y ∈ pM(I − p)
T (x)T (y)∗ = α(xy∗).

Proof. This is [MS, Lemma 5.10] (which generalizes the result of Lance [L2, Theo-
rem 3.5]). �

Proposition 2.22. Assume c(g1) = I as above. Then there is a ∗-isomorphism

γ : (I − p)M(I − p) −→ (I − q)N(I − q)
with

(i) γ is surjective.
(ii) For a ∈ (I − p)M(I − p) and x ∈ pM(I − p),

T (xa) = T (x)γ(a).
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(iii) For x, y ∈ pM(I − p),
T (x)∗T (y) = γ(x∗y).

Proof. Suppose N ⊆ B(H) (and the unit of N is IH) and write H0 = span{T (x)∗h :
x ∈ pM(I − p), h ∈ H}. Since T (pM(I − p)) = qN(I − q) and c(q) = I, it follows
that H0 = (I − q)(H).

For a ∈ (I − p)M(I − p) we define γ(a) as an operator in B(H0) and assume
that it is defined to be zero on H 	H0. We define

γ(a)

(
n∑
i=1

T (xi)∗hi

)
=

n∑
i=1

T (xia∗)∗hi

where xi ∈ pM(I − p), hi ∈ H.
Note the following〈∑

T (xia∗)∗hi,
∑

T (xia∗)∗hi
〉

=
∑
i,j

〈T (xja∗)T (xia∗)∗hi, hj〉

=
∑
i,j

〈α(xja∗ax∗i )hi, hj〉 .

Since the matrix (xja∗ax∗i ) ∈Mn(pMp) is majorized by the matrix ‖a‖2(xjx∗i ) and
α is a ∗-isomorphism, (

α(xja∗ax∗i )
)
≤ ‖a‖2

(
α(xjx∗i )

)
.

Hence ∥∥∥∑T (xia∗)∗hi
∥∥∥2

≤ ‖a‖2
∑
〈α(xjx∗i )hi, hj〉

=
∥∥∥∑T (xi)∗hi

∥∥∥2

‖a‖2.

It follows that γ(a) is well defined and can be extended to an operator in B(H)
with ‖γ(a)‖ ≤ ‖a‖. For xi ∈ pM(I − p), hi ∈ H, i = 1, 2, we have

〈γ(a)T (xi)∗h1, T (x2)∗h2〉 = 〈T (x1a
∗)∗h1, T (x2)∗h2〉

= 〈α(x2ax
∗
1)h1, h2〉 = 〈T (x1)∗h1, T (x2a)∗h2〉

= 〈T (x1)∗h1, γ(a∗)T (x2)∗h2〉 .
Hence γ(a∗) = γ(a)∗. It is easy to check that γ is multiplicative and injective. Now
suppose b ∈ N ′ then for every x ∈ pM(I − p), h ∈ H ,

γ(a)bT (x)∗h = γ(a)T (x)∗bh = T (xa∗)∗bh = bT (xa∗)∗h = bγ(a)T (x)∗h.

Hence γ(a) ∈ N . Since γ(a) is zero on H 	H0, γ(a) ∈ (I − q)N(I − q).
It follows from the definition that, for a ∈ (I − p)M(I − p) and x ∈

pM(I − p), γ(a)T (x)∗ = T (xa∗)∗; hence

T (x)γ(a) = T (xa).

This proves part (ii).
Now choose z, t ∈ qN(I − q) and write a = T−1(z)∗T−1(t) ∈ (I − p)M(I − p).

Compute, for x ∈ pM(I − p) and h ∈ H ,

γ(a)T (x)∗h = T
(
xT−1(t)∗T−1(z)

)∗
h = [α(xT−1(t)∗)z]∗h

= [T (x)t∗z]∗h = z∗tT (x)∗h = z∗tT (x)∗h.
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Hence z∗t ∈ γ
(
(I−p)M(I−p)

)
. Since products of this form generate (I−q)N(I−q)

as a von Neumann algebra and the image of γ is a von Neumann algebra, γ is
surjective. This proves (i). We can now apply [MS, Lemma 5.10] to get (iii). �

Remark. Note that γ is in fact equivalent to the representation on the internal
tensor product (I − p)Mp⊗α H .

Corollary 2.23. Assume c(g1) = I. Then there is a ∗-isomorphism

Ψ : M −→ N

such that, for a ∈M ,
(i) Ψ(pap) = α(pap) ∈ qNq,
(ii) Ψ(pa(I − p)) = T (pa(I − p)) ∈ qN(I − q),
(iii) Ψ((I − p)a(I − p)) = γ((I − p)a(I − p)) ∈ (I − q)N(I − q),
(iv) Ψ((I − p)ap) = T (pa∗(I − p))∗ ∈ (I − q)Nq.

Proof. The equations (i)-(iv) define Ψ and the properties of α and γ (see Lemma
2.20, Corollary 2.21 and Proposition 2.22) show that Ψ is indeed a ∗-isomorphism
of M onto N . �

Proof of Theorem 2.1. It was shown in Lemma 2.4 that, to prove Theorem 2.1, it
will suffice to write the algebra as a direct sum (using central projections) of algebras
for which Theorem 2.1 holds. In Lemma 2.5 we saw that we can assume that the
algebra M and the projections p and I − p satisfy one of the conditions ((1), (2)
or (3)) stated in that lemma. If condition (1) is satisfied then Theorem 2.1 follows
from Lemma 2.6. So we can assume that either condition (2) or condition (3)
is satisfied. Condition (3) is, in fact, condition (2) for p, I − p interchanged. It
will suffice, therefore, to assume condition (2). We then find, in Lemma 2.19, two
central projections, c(g1) and c(g2), with c(g1) + c(g2) = I and (again, by referring
to Lemma 2.4) we can assume that either c(g1) = I or c(g2) = I. For the first
case the theorem is proved in Corollary 2.23. In this case we get, in fact, that
e2 = 0 and the map, extending T , is a ∗-isomorphism. The proof of the other case,
when c(g2) = I, is similar and is omitted. In that case the map turns out to be a
∗-anti-isomorphism. �

Remark 2.24. The map Φ + Ψ of Theorem 2.1 is an isometry of M onto N that
extends T and maps pMp + (I − p)M(I − p) onto qNq + (I − q)N(I − q) and
pM(I − p) onto qN(I − q). We write Λ for Φ + Ψ.

Recall from the introduction that given a right self-dual Hilbert C∗-module X
over a von Neumann algebra A, we can form the von Neumann linking algebra
which can be written

Lw(X) =
(
B (X) X
X̄ A

)
where B (X) is the algebra of all bounded, adjointable A-linear maps on X and X̄ is
the conjugate module (which is a left Hilbert C∗-module over A). It is known that
this algebra is indeed a von Neumann algebra. We assume that our C∗-modules
are full and this implies that we can write X as pLw(X)(I − p) for a projection p
with c(p) = c(I − p) = I. The following corollary then follows immediately from
the theorem.
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Corollary 2.25. If X and Y are right selfdual C∗-modules over (possibly different)
von Neumann algebras A,B and if Lw(X) and Lw(Y ) are the von Neumann linking
algebras of X and Y respectively, then every linear surjective isometry to a linear
surjective isometry Λ : Lw(X)→ Lw(Y ).

Moreover, there is a central projection z ∈ Lw(X) such that if we write Ψ =
Λ|zLw(X) and Φ = Λ|(I − z)Lw(X) then

(1) Ψ is a ∗-isomorphism onto Λ(z)Lw(Y ). It defines a ∗-isomorphism Ψ11 :
zB(X) → Λ(z)B(Y ) and a ∗-isomorphism Ψ22 : zA → Λ(z)B such that, for L ∈
B(X)z, a ∈ Az and x ∈ zX, y ∈ zX,

T (Lxa) = Ψ11(L)T (x)Ψ22(a),
T (x)T (y)∗ = Ψ11(x ⊗ y∗),
T (x)∗T (y) = Ψ22(〈x, y〉A)

and
(2) Φ is a ∗-anti-isomorphism onto Λ(I−z)Lw(Y ). It defines ∗-anti-isomorphisms

Φ11 : (I − z)B (X)→ Λ(I − z)B and Φ22 : (I − z)A→ Λ(I − z)B (Y ) such that, for
L ∈ B (X)(I − z), x, y ∈ (I − z)X, a ∈ (I − z)A,

T (Lxa) = Φ22(a)T (x)Φ11(L),
T (x)T (y)∗ = Φ22(〈x, y〉),
T (x)∗T (y) = Φ11(y ⊗ x∗). �

Corollary 2.26. If X,Y,A,B are as in Corollary 2.24 but we assume also that A
is a factor then the surjective linear isometry T : X → Y can be extended to a map

Λ : Lw(X)→ Lw(Y )

which is either a ∗-isomorphism of or a ∗-anti-isomorphism.
Moreover, if Xt is any C∗-module that is isometric to X and such that the

induced isometry from Lw(Xt) to Lw(X) is a ∗-anti-isomorphism, then Y is com-
pletely isometric to either X or Xt. �

3. Isometries of Hilbert C∗-modules

Now let X and Y be right (full) Hilbert C∗-modules over the C∗-algebras A and
B respectively and let T : X → Y be a surjective linear isometry. Write L(X) (and
L(Y )) for the linking algebra of X (and Y ); i.e.

L(X) =
(
K(X) X
X̄ A

)
; L(Y ) =

(
K(Y ) Y
Ȳ B

)
where X̄ and Ȳ are the conjugate modules. X̄ is a left Hilbert C∗-module over
A and Ȳ is over B. (See Section 1 for the definitions.) It is known that L(X)
and L(Y ) are C∗-algebras. Now the isometry T : X → Y induces an isometry
T ∗∗ : X∗∗ → Y ∗∗ (where X∗∗ is the second dual of X) extending T . Write

M = L(X)∗∗, N = L(Y )∗∗.

Then M (respectively N) is a von Neumann algebra. In fact it can be identified
with the universal enveloping algebra of L(X) (respectively L(Y )). To continue we
note the following.
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Lemma 3.1. There is a projection p ∈ L(X)∗∗ such that pL(X)∗∗(I − p) is the
w∗-closure of X ⊆ L(X) ⊆ L(X)∗∗. Similarly, the w∗-closure of Y in L(Y )∗∗ is
qL(Y )∗∗(I − p) for some projection q ∈ L(Y )∗∗. Moreover, c(p) = c(I − p) = I and
similarly for q.

Proof. We can identify L(X)∗∗ with the σ-weak closure of πu(L(X)) where (πu, Hu)
is the universal representation of L(X). The w∗-topology of L(X)∗∗ is then the σ-
weak topology of πu(L(X)). Write

I1 =
(
K(X) X

0 0

)
⊆ L(X); I2 =

(
0 0
X̄ A

)
⊆ L(X).

Write M for the σ-weak closure of πu(L(X)). I1 and I2 are right ideals in L(X)
and the σ-weak closures of I1 and I2 are of the form p1M and p2M respectively.
In fact, p1 =

∨
{r(y) : y ∈ πu(I1)} and p2 =

∨
{r(z) : z ∈ πu(I2)} where r(y) is the

range projection (in M) of y. The σ-weak closure of πu(X) is then p1M∩(p2M)∗ =
p1Mp2. But it is clear that p1 + p2 = I and, thus, writing p = p1 we find that the
σ-weak closure of πu(X) is pM(I − p). A similar argument works for Y . Finally
note that MpM contains πu(L(X)I1) = πu(L(X)); hence is σ-weakly dense in M
and it follows that c(p) = I. The argument for I − p(= p2) is similar. �

Since it follows from Banach space theory that X∗∗ is isometrically isomorphic
to the w∗-closure of X in L(X)∗∗ we conclude that T ∗∗ induces a surjective linear
isometry

S : pL(X)∗∗(I − p)→ qL(Y )∗∗(I − q)
and S extends T (when we view X,Y as subspaces of L(X)∗∗ and L(Y )∗∗ respec-
tively). In particular, S maps X onto Y . Applying Theorem 2.1 to S we obtain
the following.

Theorem 3.2. Let X be a right full Hilbert C∗-module over the C∗-algebra A and
Y be a right full Hilbert C∗-module over B. Let T : X → Y be a surjective linear
isometry. Then

(1) There is a surjective linear isometry

Λ0 : L(X)→ L(Y )

extending T and mapping K(X)⊕A onto K(Y )⊕B.
(2) There is a projection f in the center of L(Y )∗∗ such that the map

Ψ0(a) = Λ0(a)f, a ∈ L(X),

is a ∗-homomorphism and the map

Φ0(a) = Λ0(a)(I − f), a ∈ L(X),

is a ∗-antihomomorphism.

Proof. Part (2) follows from Theorem 2.1 but in fact it is known whenever Λ0 is an
isometry of C∗-algebras (see [K] and [T, p. 188]). For part (1) we need only to notice
that the isometry Λ = Ψ + Φ, given by Theorem 2.1 and Remark 2.24 (mapping
L(X)∗∗ onto L(Y )∗∗) maps L(X) onto L(Y ). But we know from Corollary 2.25
that Ψ maps K(X) onto K(Y ) since

Ψ(x⊗ y∗) = S(x)⊗ S(y)∗ = T (x)⊗ T (y)∗ ∈ K(Y )

and similarly Ψ maps A onto B, X onto Y and X̄ onto Ȳ . The statements for Φ
are similar (although here Φ(K(X)) = B, Φ(A) = K(Y )). �
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Remark 3.3. If we have X,Y and T as in Theorem 3.2 and we let Ψ11 define the
restriction of Ψ0 to K(X) and Ψ22 be the restriction of Ψ0 to A, then it follows
from the properties of Ψ0 that both Ψ11 and Ψ22 are ∗-homomorphisms and

T (Kxa)f = Ψ11(K)T (x)Ψ22(a), a ∈ A, K ∈ K(X), x ∈ X.
Similarly, we get ∗-antihomomorphisms Φ11 and Φ22 with

T (Kxa)(I − f) = Φ22(a)T (x)Φ11(K), a ∈ A, K ∈ K(X), x ∈ X.

Corollary 3.4. Suppose X and Y are as in Theorem 3.2 and T : X → Y is a 2-
isometry (i.e. the map I⊗T that maps M2⊗X onto M2⊗Y is an isometry). Then
the map Λ0 of Theorem 3.2 is a ∗-isomorphism (i.e. Λ0 = Ψ0, f = I) and if we let
Ψ11 and Ψ22 be the maps induced by Λ0 = Ψ0 on K(X) and on A respectively (so
that Ψ11 : K(X)→ K(Y ) and Ψ22 : A→ B), then Ψ11 and Ψ22 are ∗-isomorphisms
and

(i) T (Lxa) = Ψ11(L)T (x)Ψ22(a), L ∈ K(X), a ∈ A, x ∈ X,
(ii) T (x)∗T (y) = Ψ22(〈x, y〉), x, y ∈ X,
(iii) T (x)T (y)∗ = Ψ11(x⊗ y∗), x, y ∈ X.

Proof. Write T2 for the isometry T2 : M2 ⊗X →M2 ⊗ Y . Fix

x = e12 ⊗ x0, y = e11 ⊗ y0, z = e21 ⊗ z0 in M2 ⊗X.
Since T2 satisfies Lemma 2.2,

T2(xy∗z + zy∗x) = T2(x)T2(y)∗T2(z) + T2(z)T2(y)∗T2(x).

But xy∗z = 0 and T2(x)T2(y)∗T2(z) = 0. This implies that T2

(
e22 ⊗ z0y

∗
0x0

)
=

T2(zy∗x) = T2(z)T2(y)∗T2(x) = e22 ⊗ T (z0)T (y0)∗T (x0). Hence T (z0y
∗
0x0) =

T (z0)T (y0)∗T (x0) for all x0, y0, z0 in X . We again write X∗∗ as pM(I − p) (M =
L(X)∗∗) and Y ∗∗ as qN(I−q) (N = L(Y )∗∗). We get an isometry S : pM(I−p)→
qN(I − q) extending T . Clearly this extension still satisfies

S(zy∗x) = S(z)S(y)∗S(x), x, y, z ∈ pM(I − p).
We can now apply the results of the previous section to S. As in Lemma 2.5, M can
be decomposed into a direct sum of von Neumann algebras each satisfying one of
the conditions stated in Lemma 2.5. If condition (1) holds then, using the proof of
Lemma 2.6 we see that the map induced on the linking algebra is a ∗-isomorphism.
Suppose now that condition (2) holds. Let {ui} be as in this condition and write
vi = S(ui), ri = S(ui)S(ui)∗ and di = S(ui)∗S(ui). We have, for i 6= j,

0 = S(uiu∗iuj) = S(ui)S(ui)∗S(uj).

Hence rirj = 0. It follows form Lemma 2.7 that di = dj for all i, j. It then
follows that the map β, defined in the discussion following Lemma 2.13, vanishes;
i.e. θ = α. Hence the map induced on the linking algebra M is a ∗-isomorphism. A
similar argument works if condition (3) (of Lemma 2.5) holds. Statements (i)-(iii)
now follow. �

Remark 3.5. Corollary 3.4 shows that a (surjective) 2-isometry from one C∗-Hilbert
module to another is necessarily completely isometric. I do not know to what extent
it holds for larger classes of operator spaces. The argument above (combined with
Corollary 2.10 of [AS]) can be used to show that unital 2-isometries of operator
algebras are multiplicative and for some classes of operator algebras this would
imply that they are complete isometries.
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Given a Hilbert space H there is more than one way to represent it as an operator
space; i.e. one can find different operator spaces that are all isometric to H but
they are pairwise non-completely-isometric. One representation of H as an operator
space is when you fix an orthonormal basis {ei} for H and consider the space of all
bounded operators in B(H) whose matrix with respect to this basis has non-zero
entries only in the first column. This subspace of B(H) is isometric to H and is
called the Hilbert column space, written Hc. One can write Hc = B(C e1, H).
Replacing the word “column” by the word “row” we get the Hilbert row space
Hr (or B(H,C e1)). It is known that these two operator spaces are isometric but
not completely isometric. Both operator spaces have a natural Hilbert C∗-module
structure. Hc is a C∗-module over the algebra C and Hr is a C∗-module over the
algebra K(H), the compact operators on H . But in addition to Hc and Hr there
are many other different (i.e. not completely isometric) representations of H as
an operator space (see [Pi]). The following corollary shows that none of these is a
Hilbert C∗-module.

Corollary 3.6. Let H be a fixed Hilbert space and X be a Hilbert C∗-module over
a C∗-algebra A that is isometric (as a Banach space) to H. Then either A is
isomorphic to C and X is completely isometrically isomorphic to Hc or A is ∗-
isomorphic to K(H) and X is completely isometrically isomorphic to Hr.

Proof. Assume, for simplicity, that H is infinite dimensional. Write T : Hc → X
for the linear surjective isometry of Hc onto X . From Theorem 3.2 it follows that
we can extend T to an isometry

Λ0 : L(Hc) =
(
K(H) Hc

Hc C

)
−→ L(X) =

(
K(X) X
X̄ A

)
.

But L(Hc) is ∗-isomorphic to K(H) and thus L(Hc)∗∗ is a factor. Hence Λ0 is
either a ∗-isomorphism or a ∗-anti-isomorphism. In the former case Λ0 maps C
onto A and Hc onto X and is a complete isometry. In the latter case we consider
the map τ

τ :
(
C Hr

Hr K(H)

)
−→

(
K(H) Hc

Hc C

)
defined by

τ

(
λ y
z̄ K

)
=
(
Kt yt

zt λ

)
, y, z ∈ Hr, K ∈ K(H), λ ∈ C

(where Kt is the transpose of K and yt is the transpose of y). Then τ is a ∗-anti-
isomorphism and Λ0◦τ is then a ∗-isomorphism that maps, completely isometrically,
K(H) onto A and Hr onto X . �
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