Geometry of chain complexes and outer automorphisms under derived equivalence
HTML articles powered by AMS MathViewer
- by Birge Huisgen-Zimmermann and Manuel Saorín
- Trans. Amer. Math. Soc. 353 (2001), 4757-4777
- DOI: https://doi.org/10.1090/S0002-9947-01-02815-X
- Published electronically: July 25, 2001
- PDF | Request permission
Abstract:
The two main theorems proved here are as follows: If $A$ is a finite dimensional algebra over an algebraically closed field, the identity component of the algebraic group of outer automorphisms of $A$ is invariant under derived equivalence. This invariance is obtained as a consequence of the following generalization of a result of Voigt. Namely, given an appropriate geometrization $\operatorname {Comp}^{A}_{{\mathbf d}}$ of the family of finite $A$-module complexes with fixed sequence ${\mathbf {d}}$ of dimensions and an “almost projective” complex $X\in \operatorname {Comp}^{A} _{{\mathbf d}}$, there exists a canonical vector space embedding \[ T_{X}(\operatorname {Comp}^{A}_{{\mathbf {d}}}) / T_{X}(G.X) \ \longrightarrow \ \ \operatorname {Hom} _{D^{b}(A{\operatorname {\text {-}Mod}})}(X,X[1]), \] where $G$ is the pertinent product of general linear groups acting on $\operatorname {Comp}^{A}_{{\mathbf {d}}}$, tangent spaces at $X$ are denoted by $T_{X}(-)$, and $X$ is identified with its image in the derived category $D^{b} (A{\operatorname {\text {-}Mod}})$.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- E. Cline, B. Parshall, and L. Scott, Derived categories and Morita theory, J. Algebra 104 (1986), no. 2, 397–409. MR 866784, DOI 10.1016/0021-8693(86)90224-3
- J.A. de la Peña, Tame algebras. Some fundamental notions, Universität Bielefeld. Ergänzungsreihe 95-010, 1995.
- A. Fröhlich, The Picard group of noncommutative rings, in particular of orders, Trans. Amer. Math. Soc. 180 (1973), 1–45. MR 318204, DOI 10.1090/S0002-9947-1973-0318204-3
- F. Guil Asensio and M. Saorín, On automorphism groups induced by bimodules, Arch. Math. (Basel) 76 (2001), 12–19.
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 (German). MR 768181, DOI 10.1007/978-3-322-83813-1
- Helmut Lenzing and Hagen Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), no. 4, 1685–1700. MR 1747349, DOI 10.1080/00927870008826922
- Markus Linckelmann, Stable equivalences of Morita type for self-injective algebras and $p$-groups, Math. Z. 223 (1996), no. 1, 87–100. MR 1408864, DOI 10.1007/PL00004556
- R. David Pollack, Algebras and their automorphism groups, Comm. Algebra 17 (1989), no. 8, 1843–1866. MR 1013471, DOI 10.1080/00927878908823824
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Jeremy Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), no. 1, 37–48. MR 1099084, DOI 10.1112/jlms/s2-43.1.37
- R. Rouquier, Groupes d’automorphismes et équivalences stables ou dérivées, Preprint.
- R. Rouquier and A. Zimmermann, Picard groups for derived module categories, Preprint.
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- Detlef Voigt, Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Mathematics, Vol. 592, Springer-Verlag, Berlin-New York, 1977 (German). Mit einer englischen Einführung. MR 0486168
- A. Yekutieli, Dualizing complexes, Morita equivalence and the derived Picard group of a ring, J. London Math. Soc. 60 (1999), 723-746.
Bibliographic Information
- Birge Huisgen-Zimmermann
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
- MR Author ID: 187325
- Email: birge@math.ucsb.edu
- Manuel Saorín
- Affiliation: Departamento de Mátematicas, Universidad de Murcia, 30100 Espinardo-MU, Spain
- MR Author ID: 255694
- Email: msaorinc@fcu.um.es
- Received by editor(s): November 6, 2000
- Published electronically: July 25, 2001
- Additional Notes: While carrying out this project, the first-named author was partially supported by an NSF grant, and the second-named author by grants from the DGES of Spain and the Fundación ‘Séneca’ of Murcia. The contents of this article were presented at the Conference on Representations of Algebras at Saõ Paolo in July 1999 and at the Workshop on Interactions between Algebraic Geometry and Noncommutative Algebra at the Mathematical Sciences Research Institute (Berkeley) in February 2000, by the second- and first-named authors, respectively.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4757-4777
- MSC (2000): Primary 16E05, 16G10, 16P10, 18E30, 18G35
- DOI: https://doi.org/10.1090/S0002-9947-01-02815-X
- MathSciNet review: 1852081
Dedicated: The authors wish to dedicate this paper to Idun Reiten on the occasion of her sixtieth birthday