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RANDOM VARIABLE DILATION EQUATION AND
MULTIDIMENSIONAL PRESCALE FUNCTIONS

JULIE BELOCK AND VLADIMIR DOBRIC

Abstract. A random variable Z satisfying the random variable dilation equa-

tion MZ
d
= Z + G, where G is a discrete random variable independent of Z

with values in a lattice Γ ⊂ Rd and weights {ck}k∈Γ and M is an expanding
and Γ-preserving matrix, if absolutely continuous with respect to Lebesgue
measure, will have a density ϕ which will satisfy a dilation equation

ϕ (x) = |detM |
∑
k∈Γ

ckϕ (Mx− k) .

We have obtained necessary and sufficient conditions for the existence of the

density ϕ and a simple sufficient condition for ϕ’s existence in terms of the
weights {ck}k∈Γ . Wavelets in Rd can be generated in several ways. One

is through a multiresolution analysis of L2
(
Rd
)

generated by a compactly
supported prescale function ϕ. The prescale function will satisfy a dilation
equation and its lattice translates will form a Riesz basis for the closed linear
span of the translates. The sufficient condition for the existence of ϕ allows a
tractable method for designing candidates for multidimensional prescale func-
tions, which includes the case of multidimensional splines. We also show that
this sufficient condition is necessary in the case when ϕ is a prescale function.

1. Introduction

Multiresolution analysis on Rd is one possible framework for construction of
wavelet bases. Let Γ be a lattice in Rd and let M : Rd → Rd be an expansive
linear transformation, that is, all eigenvalues of M have modulus greater than 1,
such that MΓ ⊆ Γ. Then m = |detM | is an integer, greater than one, equal
to the order of the group Γ/MΓ. A multiresolution analysis associated to Γ and
M with prescale function ϕ is an increasing sequence of subspaces of L2

(
Rd
)
,

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · satisfying the following four conditions:
(i)
⋃
j

Vj is dense in L2
(
Rd
)
;

(ii)
⋂
j

Vj = {0};

(iii) f (·) ∈ Vj ⇔ f
(
M−j ·

)
∈ V0;

(iv) {ϕ (· − γ)}γ∈Γ is a Riesz basis for V0.
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A wavelet basis associated to the multiresolution analysis is an orthonormal basis
for L2

(
Rd
)

of the form
{
mj/2ψk

(
M j · −γ

)
: j ∈ Z, γ ∈ Γ, 1 ≤ k ≤ m

}
where

ψk(x) =
∑
γ∈Γ

ak (γ)ϕ (Mx− γ)

and{ak (γ)}γ∈Γ is square summable for 1 ≤ k ≤ m. The functions {ψk}mk=1 are
called the wavelet generators. When the lattice translates of ϕ form an orthonormal
basis of V0 we take ψ1 := ϕ.

Conditions (iii) and (iv) together imply that the set {ϕ (M · −γ)}γ∈Γ is a Riesz
basis for the subspace V1. Since ϕ ∈ V0 ⊆ V1, we can write

ϕ (x) =
∑
γ∈Γ

a (γ)ϕ (Mx− γ) ;(1.1)

equation (1.1) is called a dilation equation.
One way to understand (1.1) is through a probabilistic approach. Consider a

discrete random variable G with values in a subset Γ1 of Γ and a random variable
Z, independent of G, with values in Rd, both defined on a complete probability
space (Ω,F , P ) , which satisfy

MZ
d= Z +G.(1.2)

Here, d= denotes equality of the corresponding laws. Assume that Z is abso-
lutely continuous with respect to Lebesgue measure and denote its density by ϕ.
Equation (1.2) implies that ϕ satisfies the dilation equation (1.1) with a (γ) =
|detM |P (G = γ). Our approach to constructing candidates for prescale functions
comes from understanding the structure of the solution of this random variable
dilation equation.

In the one-dimensional case with M = 2, Gundy and Zhang [6] proved that Z is
absolutely continuous with respect to Lebesgue measure if and only if the fractional
part of Z is uniform. They also gave a sufficient condition for the uniformity of
the fractional part. In the higher dimensional case, we show that the statements
of Gundy and Zhang hold true when a proper notion of the “fractional” part of a
random variable is introduced. We have found the theory of self-affine tilings of
Rd and use of the digit representation of the fractional part of Z to be the correct
framework for the higher dimensional case. The major difficulty in generalizing the
results to higher dimensions comes from the fact that M may not be merely an
expansion but may include a rotation. Such an M causes a tile to have, in general,
a fractal boundary. The boundary difficulties called for some new techniques of
proofs beyond those used in [6].

In Section 2 we introduce notation needed to express an explicit solution Z to
(1.2). Definitions of the “fractional” and “integer” parts of an Rd-valued random
variable Z are given based on concepts of self-affine tilings. We also give some
basic results regarding the fractional part of Z. In Section 3 we give necessary
and sufficient conditions under which the random variable Z will have a density, in
terms of the fractional part of Z. In Section 4 we give a simple sufficient condition
on the weights on the values of G which guarantee absolute continuity of Z. In
Section 5 we give examples of density functions obtained using these results. In
Section 6 we show that the sufficient condition of Section 4 is also necessary when
ϕ is a prescale function.
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2. Basic properties of a random variable

dilation equation solution

In order to write an explicit solution of (1.2), some definitions are needed. Let
G1, G2, ... be an i.i.d. sequence of random variables defined on the space (Ω,F , P ),
with G1

d= G. Recall that G is discrete with values in the lattice. Assume
∞∑
j=1

M−jGj <∞ a.s.

Then the sequence {Zk} defined by

Zk =
∞∑
j=1

M−jGj+k for k = 1, 2, . . .(2.1)

is a sequence of random variables. Note that the following two properties hold:

MZk = M(
∞∑
j=1

M−jGj+k) = Gk+1 +
∞∑
j=2

M−j+1Gj+k = Gk+1 + Zk+1,

and

Z0
d= Zk, and Gk is independent of Zk.

Therefore for any k, Zk solves the dilation equation (1.2).
The fractional part of Z will play an essential role in what follows. In order to

define the fractional part of Z, we first invoke some basic facts about self-affine
tilings. Let Γ0 denote a set of coset representatives of Γ/MΓ, and without loss of
generality, we assume 0 ∈ Γ0. A self-affine tiling of Rd consists of a closed set T
with nonempty interior such that⋃

γ∈Γ

(T + γ) = Rd and
⋃
γ∈Γ0

(T + γ) = MT.(2.2)

Clearly a tiling depends on the choice of Γ0. In dimensions d = 2 and 3, one can
always find a Γ0 that admits a self-affine tiling, and in higher dimensions it can be
done for m = |detM | > d [10]. For the remainder of the paper, we will assume
that Γ0 admits a self-affine tiling.

The lattice translates of the interior of T are disjoint and int T 6= ∅ [1], so if
x ∈

⋃
γ∈Γ

(int T + γ), then x ∈ int T + γx where γx denotes the unique element of Γ

giving the location of the point x. If x /∈
⋃
γ∈Γ

(int T +γ), then we say x is a boundary

point and note that x ∈
⋂
γ∈Γ1

(T + γ), for some finite Γ1 ⊆ Γ. The fact that Γ1 is

finite follows from the compactness of T .
Define [ · ] : Rd → Γ by

[x] =


γx if x ∈

⋃
γ∈Γ

(int T + γ),

max
γ∈Γ1

γ if x is a boundary point,

where “max” is meant in the sense of the dictionary ordering of Rd.

Proposition 1. [ · ] is Borel-measurable.
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Proof. We only need to consider {x | [x] = γ} for a fixed γ ∈ Γ. Since T is compact
and Γ is countable,

[γ1]−1 = (int T + γ1) ∪
⋃
γ∈Γ

((T + γ) ∩ (T + γ1))

is a Borel set.

For any x ∈ Rd we will call [x] the integer part of x and (x) = x − [x] the
fractional part of x. By Proposition 1, [Z] is a random variable and therefore so is
(Z) = Z − [Z]. Notice that (Z) takes values in the tile T .

A point t ∈ Rd is in T if and only if

t =
∞∑
j=1

M−jγj ,(2.3)

where for all j, γj ∈ Γ0 [5]. Based on the expansion (2.3), define functions ξj : Ω→
Γ0, j = 1, 2, ..., by

(Z0) =
∞∑
j=1

M−jξj ;(2.4)

that is, ξj (ω) is the element of Γ0 which appears in the jth term of the tile expansion
of (Z0) (ω). If there is more than one expansion for a tile point, simply choose one
of them.

Proposition 2. Assume that P ((Z0) ∈ ∂T ) = 0. Then {ξj}∞j=1 is a sequence of
random variables and for each k

(Zk) =
∞∑
j=1

M−jξj+k a.s.

Proof. From the dilation equation (1.2) and from the decomposition of Z0 into its
fractional and integer parts, we obtain

M [Z0] +M (Z0) = MZ0 = G1 + Z1 = G1 + [Z1] + (Z1) .

Using (2.4) it follows that

M [Z0] + ξ1 +
∞∑
j=1

M−jξj+1 = G1 + [Z1] + (Z1) .(2.5)

The definition of a lattice tiling implies (γ + T ) ∩ (γ′ + int T ) = ∅ if and only if
γ 6= γ′. So, if (Z1) ∈ int T , then by (2.5), we have

M [Z0] + ξ1 = G1 + [Z1] and (Z1) =
∞∑
j=1

M−jξj+1.(2.6)

Since P ((Z0) ∈ ∂T ) = 0 and since Z1
d= Z0, it follows that P ((Z1) ∈ int T ) = 1,

and therefore

(Z1) =
∞∑
j=1

M−jξj+1 a.s.

By (2.6) ξ1 = G1 + [Z1]−M [Z0] almost surely and so ξ1 is a random variable.
The proof is completed by induction on k.
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Define h : Γ → Γ0 to be the map which assigns to each element of Γ its coset
representative.

Proposition 3. Suppose P ((Z0) ∈ ∂T ) = 0. Then for

k = 1, 2, . . . , ξk = h ([Zk] +Gk) a.s.

Proof. P ((Z0) ∈ ∂T ) = 0 implies that (2.6) holds. So ξ1 = h (G1 + [Z1]) since
coset representatives are unique.

Proposition 2, the fact that Zk = [Zk] + (Zk), and the dilation equation (1.2)
together lead to

M [Zk] + ξk+1 + (Zk+1) = Gk+1 + [Zk+1] + (Zk+1) a.s.

This implies that M [Zk] + ξk+1 = Gk+1 + [Zk+1] a.s. since P ((Zk+1) ∈ ∂T ) = 0.
The uniqueness of coset representatives ensures ξk+1 = h (Gk+1 + [Zk+1]) a.s.

Define g :
(
Rd
)∞ → Rd by

g(x1, x2, ...) = x1 +

 ∞∑
j=1

M−jxj+1

 .
The measurability of g follows from Proposition 1 and from the fact that the pro-
jection map is a measurable function.

Proposition 4. Let Yk := (h ◦ g) (Gk, Gk+1, ...). Then Y1, Y2, ... is a stationary
and ergodic sequence of random variables.

Proof. The proof follows from the fact that h ◦ g is measurable and {Gk}∞k=1 is
i.i.d.

Corollary 1. If P ((Z0) ∈ ∂T ) = 0, the sequence ξ1, ξ2, ... is stationary and er-
godic.

Proof. If P ((Z0) ∈ ∂T ) = 0, Proposition 4 implies ξk = Yk a.s .

3. Necessary and sufficient conditions for absolute continuity of Z

Throughout this section let λT := λ
λ(T ) denote Lebesgue measure normalized by

the measure of the tile T (if Γ = Zd, then λ (T ) = 1)).

Theorem 1. Let M, Γ, Γ0 and random variables G, Z and ξk be as defined in the
previous sections. Suppose G has values in a finite set Γ1 such that Γ0 ⊆ Γ1 ⊂ Γ.
Then the following are equivalent:

1) The law of (Z) is λT on T ;
2) The ξk are independent and uniformly distributed on Γ0;
3) The law of Z is absolutely continuous with respect to λ.

Proof. (1⇒3) Since G is bounded, so is Z, and therefore [Z] takes on only finitely
many values. Let Γ2 be the range of [Z]. One solution of equation (1.2) is Z d=
∞∑
k=1

M−kGk. Jessen and Wintner’s theorem [8] implies that the law of Z must be

either purely discrete, purely singular, or purely absolutely continuous. We will
rule out the discrete and singular cases.
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First, suppose Z is purely discrete. Then P (Z = z) > 0 for some z. Now,

0 < P (Z = z) = P ([Z] + (Z) = z)

=
∑
γ∈Γ2

P ([Z] + (Z) = z | [Z] = γ)P ([Z] = γ)

implies that there exists a γ ∈ Γ1 such that

P ((Z) = z − γ | [Z] = γ )P ([Z] = γ) > 0,

contradicting the assumption that (Z) is uniform.
Second, suppose Z is purely singular with respect to Lebesgue measure. Then

there exists B such that P (Z ∈ B) = 1 and λT (B) = 0. So

P ([Z] + (Z) ∈ B) =
∑
γ∈Γ2

P ([Z] + (Z) ∈ B | [Z] = γ)P ([Z] = γ) = 1,

which implies that there exists a γ ∈ Γ2 such that

P ((Z) ∈ B − γ | [Z] = γ)P ([Z] = γ) ≥ 1
|Γ2|

.

But under the assumption that (Z) is uniform, P ((Z) ∈ B − γ) = λT (B − γ) =
λT (B) = 0, a contradiction.

Next, 2)⇒ 1). This proof will be broken into three main steps:
(i) assumption 2) implies P ((Z0) ∈ ∂T ) = 0;
(ii) ν := £ (Z) and λT agree on sets of the type M−kT +M−kγ, γ ∈ Γ;
(iii) ν and λT agree on all closed balls.

Remark. The first step is trivial in one dimension. For example, if M = 2, Γ = Z
and Γ0 = {0, 1}, then T = [0, 1] and

P

( ∞∑
k=1

2−kξk ∈ ∂T
)

= P (ξk = 0 for all k or ξk = 1 for all k) = 0.

i) For each n = 0, 1, 2, ... let

Wn =
∞∑
k=1

M−kξk+n.

Notice that the range of Wn is in T and since the sequence {ξk}∞k=1 is i.i.d., Wn
d=

W0, n = 1, 2, ....

Claim. P (W0 ∈ int T ) > 0.

Proof. Since int T 6= ∅ [10], let B (x; r) ⊂ int T be an open ball centered at x with

radius r. Then x =
∞∑
i=1

M−iγi (x) , where γi (x) ∈ Γ0 for all i [5]. Choose k large

enough so that
∞∑
i=k

∥∥M−i∥∥max {‖γ‖ | γ ∈ Γ0} <
r

2
.

Let y =
k−1∑
i=1

M−iγi (x). Note that y ∈ B
(
x; r2

)
. Let

S = {t ∈ T | γi (t) = γi (x) for i = 1, 2, . . . , k − 1} .
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Then S ⊆ B (x; r) and

P (W0 ∈ S) = P (ξ1 = γ1 (x) , ..., ξk−1 = γk−1 (x)) =
1

mk−1
.

So P (W0 ∈ S) > 0, which together with S ⊂ int T implies P (W0 ∈ int T ) > 0.

One property of a tiling is that distinct tiles may only intersect on their bound-
aries. If we set Γ∂ = {γ ∈ Γ \ {0} | T ∩ (T + γ) 6= ∅}, then

∂T =
⋃
γ∈Γ∂

(T ∩ (T + γ)) .(3.1)

Claim. {Wn ∈ ∂T } ⊆ {Wn+1 ∈ ∂T } for n = 0, 1, 2, . . . .

Proof. Suppose ω ∈ {W0 ∈ ∂T }; that is,
∞∑
k=1

M−kξk (ω) ∈ ∂T.

Applying M to both sides and using properties of tiles yields

W1 (ω) =
∞∑
k=1

M−kξk+1 (ω) ∈ ∂MT − ξ1 (ω) .(3.2)

Set γ1 := ξ1 (ω). By the self-affine property of the tiling, ∂MT ⊆
⋃
γ∈Γ0

(γ + ∂T ) .

Therefore, (3.2) becomes

W1 (ω) ∈
⋃
γ∈Γ0

((γ − γ1) + ∂T ) ,

implying that for at least one γ ∈ Γ0, W1 (ω) ∈ (γ − γ1) + ∂T . So

W1 (ω) ∈ ((γ − γ1) + ∂T ) ∩ T.
If γ = γ1, then W1 (ω) ∈ ∂T ; if γ 6= γ1, then int T ∩ (γ − γ1 + int T ) = ∅, so
W1 (ω) ∈ ∂T. We have shown that {W0 ∈ ∂T } ⊆ {W1 ∈ ∂T }. By the same argu-
ment, {Wn ∈ ∂T } ⊆ {Wn+1 ∈ ∂T } for each n.

Claim. P(W0 ∈ ∂T ) = 0.

Suppose not. Set Bk = {Wk ∈ ∂T } and B =
∞⋃
k=0

Bk. Notice that since the Bk

are nested, B ∈
∞⋂
n=1

σ (ξn, ξn+1, ...) . By the Kolmogorov 0-1 law for independent

random variables P (B) = 1, because {W0 ∈ ∂T } ⊂ B and P (W0 ∈ ∂T ) > 0.
Furthermore,

1 = P (B) = lim
k→∞

P (Wk ∈ ∂T ) = P (W0 ∈ ∂T ) ,

with the last equality following from the fact that the sequence ξ1, ξ2, . . . is i.i.d. But
this is a contradiction of the fact that P (W0 ∈ int T ) > 0. So P (W0 ∈ ∂T ) = 0.

Since W0 = (Z0) almost surely we have shown that P ((Z0) ∈ ∂T ) = 0, conclud-
ing the first step.

(ii) To begin the second step of the proof, fix γ ∈ Γ and k ∈ N. Then

λ(M−kT +M−kγ) = λ(M−kT ) =
λ (T )
mk

.
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By Proposition 2 and (i) (Zk) =
∞∑
i=1

M−iξi+k a.s. Now,

P
(
(Z0) ∈M−kT +M−kγ

)
= P

(
Mk (Z0) ∈ T + γ

)
= P

(
Mk

∞∑
i=1

M−iξi ∈ T + γ

)

= P

 0∑
j=1−k

M−jξj+k +
∞∑
j=1

M−jξj+k ∈ T + γ


= P (L (k) + (Zk) ∈ T + γ) ,

where L (k) :=
0∑

j=1−k
M−jξj+k. Notice that L(k) is a function of finitely many ξi

and has values in the lattice; therefore,

P (L (k) + (Zk) ∈ T + γ) =
∑
γ′

P ((Zk) ∈ T + γ − γ′, L (k) = γ′)

= P ((Zk) ∈ T, L (k) = γ) .

The last equality follows since all the terms in the sum are zero except when
γ′ = γ as a consequence of P ((Zk) ∈ ∂T ) = 0. Furthermore,

P ((Zk) ∈ T, L (k) = γ) = P (L (k) = γ)

= P
(
Mk−1ξ1 + · · ·+Mξk−1 + ξk = γ

)
= P

(
M
(
Mk−2ξ1 + · · ·+ ξk−1

)
+ ξk = γ

)
.

(3.3)

Since each γ ∈ Γ has a unique representation γ = γ0 +Mγ′′, (3.3) becomes

P
(
ξk = γ0 , Mk−2ξ1 + · · ·+ ξk−1 = γ′′

)
= P

(
ξk = γ0 , ξk−1 = γ1,M

k−3ξ1 + · · ·+ ξk−2 = γ′′′
)

= P (ξk = γ0 , ξk−1 = γ1, . . . , ξ1 = γk−1)

=
k∏
i=1

P (ξi = γk−i) =
1
mk

.

So £ ((Z)) and λ
λ(T ) are equal on sets of the type M−kT +M−kγ, γ ∈ Γ and k ∈ N .

(iii) We now show that £ ((Z)) and λT agree on all closed balls in Rd.
Set ν := £ ((Z)), and suppose there is a closed ball B (x, r) on which the mea-

sures do not agree. Assume first that ν (B (x, r) ∩ T ) > λT (B (x, r) ∩ T ) . There
exists η > 0, such that ν (B (x, r) ∩ T ) > λT (B (x, r + η) ∩ T ) . Choose k0 such
that diam(M−k0T ) < η

2 . Set

D =
⋃{

M−k0T +M−k0γ | γ ∈Mk0B
(
x, r +

η

2

)}
.

Claim. B (x, r) ⊆ D ⊆ B (x, r + η).

Proof. Let y ∈ B (x, r). Since Rd =
⋃
γ∈Γ

(
M−k0T +M−k0γ

)
, there is a γ ∈ Γ such

that y ∈M−k0T+M−k0γ. So y = z+M−k0γ, for some z ∈M−k0T . If z ∈M−k0T ,
then ‖z‖ ≤ diam(M−k0T ) since 0 ∈ T. Now∥∥M−k0γ − x

∥∥ ≤ ‖y − x‖ + ‖z‖ ≤ r + diam(M−k0T ) ≤ r +
η

2
,
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that is,

M−k0γ ∈ B
(
x, r +

η

2

)
,

which means y ∈ D.
Now suppose that y ∈ D. Then y = z + M−k0γ for some z ∈ M−k0T and

γ ∈ B
(
x, r + η

2

)
, and

‖y − x‖ ≤
∥∥M−k0γ − x

∥∥+ ‖z‖ ≤ r + η;

so y ∈ B (x, r + η). This completes the proof of the claim.

Thus λT (B (x, r + η) ∩ T ) ≥ λT (D ∩ T ) and ν (D ∩ T ) ≥ ν (B (x, r) ∩ T ). If we
can show that λT (D ∩ T ) = ν (D ∩ T ), we will obtain a contradiction. To see this,
recall that by the self-affine property of the tiling, we can write

T =
⋃

γ∈Γk0

M−k0T +M−k0γ ,(3.4)

where Γk0 = Γ0 +M Γ0 + · · ·+ Mk0−1Γ0. If γ ∈ Γk0 , then M−k0T +M−k0γ ⊂ T ,
so int(M−k0T + M−k0γ) ⊂ T. If γ /∈ Γk0 , then T ∩ int

(
M−k0T +M−k0γ

)
= ∅. If

not, there is an x in T ∩ int
(
M−k0T +M−k0γ

)
. Since x ∈ T , x is in one of the sets

in the right-hand side of (3.4); that is, x ∈M−k0T +M−k0γ′, where γ′ ∈ Γk0 . So

x ∈
(
M−k0T +M−k0γ′

)
∩ int

(
M−k0T +M−k0γ

)
,

which implies Mk0x ∈ (T + γ′)∩ int(T + γ) . This contradicts the fact that distinct
translates of T are disjoint except at the boundary. So,

either int
(
M−k0T +M−k0γ

)
⊂ T or int

(
M−k0T +M−k0γ

)
⊂ T c.

Set C = Γk0 ∩Mk0B
(
x, r + η

2

)
and C′ = (Γ \ Γk0) ∩Mk0B

(
x, r + η

2

)
. Then

D ∩ T =

⋃
γ∈C

M−k0T +M−k0γ

 ∩ T
 ∪

 ⋃
γ∈C′

M−k0T +M−k0γ

 ∩ T
 .

The second intersection consists only of boundary points of T . Since ν (∂T ) = 0,
then

ν (D ∩ T ) = ν

⋃
γ∈C

M−k0T +M−k0γ

 ∩ T

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and ν
(
∂
(
M−k0T +M−k0γ

))
= 0. The Lebesgue measure of ∂T is zero [10], so

λ
(
∂M−k0T

)
= 0. Thus we have

λT (D ∩ T ) = λT

 ⋃
γ∈Γk0

M−k0T +M−k0γ


=

∑
γ∈Γk0

λT
(
M−k0T +M−k0γ

)
=

∑
γ∈Γk0

ν
(
M−k0T +M−k0γ

)

= ν

 ⋃
γ∈Γk0

M−k0T +M−k0γ

 = ν (D ∩ T ) .

As mentioned above, the fact that λT (D ∩ T ) = ν (D ∩ T ) implies

λT (B (x, r + η) ∩ T ) ≥ ν (B (x, r) ∩ T )

which contradicts ν (B (x, r) ∩ T ) > λT (B (x, r) ∩ T ). So we conclude that λT ≤ ν
on all closed balls. Repeating the proof with the roles of ν and λT reversed yields
that ν and λT agree on all closed balls.

Hoffmann-Jørgensen proved that Radon probabilities which agree on all closed
balls in Rd agree on all Borel sets. (Corollary 5 in [7]), which completes the proof
that 2)⇒ 1).

In order to prove 3) ⇒ 2), we need a version of the Kakutani Dichotomy for
stationary ergodic sequences.

Lemma 1. Let {ξ′k}
∞
k=1 be a stationary, ergodic sequence, such that each ξ′k is

uniform with values in Γ0. Let {ξk}∞k=1 be a stationary, ergodic sequence, such
that each ξk has values in Γ0, but is not uniform. Then µ = £ (ξ1, ξ2, ...) and
µ′ = £ (ξ′1, ξ

′
2, ...) are mutually singular.

Proof. Let µ = µa + µs, where µa << µ′ and µs ⊥ µ′. Suppose µa (Ω) > 0.
Since µ 6= µ′ , there must be a cylindrical set A such that µa(A) 6= µ′(A). (If not,

then µa = µ′, which implies µ = µ′, contradicting the assumption that µ 6= µ′.) Let
f = 1A, then we get∫

Ω

f(x1, .., xn)dµa(x) 6=
∫
Ω

f(x1, .., xn)dµ′ (x) ,

Eµa(f) 6= Eµ′ (f).

Set c = Eµa(f) and c′ = Eµ′(f). The fact that {ξk}∞k=1 and {ξ′k}∞k=1 are ergodic
sequences means that the shift operator is an ergodic operator for (Ω, S, µ) and
(Ω, S, µ′) respectively, where Ω = Γ∞0 . Applying the Ergodic Theorem (with f)
and the fact that the sequences are stationary, it follows that

1) 1
k

k−1∑
i=0

f(x1+i, . . . , xn+i)
k→∞→ c a.s. µa,

2) 1
k

k−1∑
i=0

f(x1+i, . . . , xn+i)
k→∞→ c′ a.s. µ′.

So, 1) is true for all {xi}∞i=1 ∈ Ω \ N , where µa(N) = 0 and 2) is true for all
{xi}∞i=1 ∈ Ω \N ′ , where µ′(N ′) = 0.
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Define M := N ∪ N ′. Notice that µa(M) ≤ µa (N) + µa(N ′) = µa(N ′). Since
µa << µ′ and µ′(N ′) = 0, we have µa(N ′) = 0 and so µa(M) = 0. We have
assumed that µa (Ω) > 0; therefore, µa(M) = 0 implies that µa(Ω \M) > 0; that
is, µa ((Ω \N) ∩ (Ω \N ′)) > 0, which means that there is a sequence {xi}∞i=1 ∈
(Ω \N) ∩ (Ω \N ′) such that

1
k

k−1∑
i=0

f(x1+i, . . . , xn+i)
k→∞→ c and

1
k

k−1∑
i=1

f(x1+i, . . . , xn+i)
k→∞→ c′.

This is a contradiction, since c 6= c′. Therefore, µa = 0 and thus, µ⊥µ′.

Now we are ready to show that 3)⇒ 2).
First, we note that £(Z) << λT implies that £((Z)) << λT . To see this,

observe that for E ∈ B
(
Rd
)
,

P ((Z) ∈ E) = P (Z − [Z] ∈ E) =
∑
γ∈Γ

P (Z ∈ E + γ, [Z] = γ)(3.5)

≤
∑
γ∈Γ

P (Z ∈ E + γ) .

If λT (E) = 0, then λT (E + γ) = 0 and so P (Z ∈ E + γ) = 0 for all γ ∈ Γ by the
assumption of absolute continuity of £(Z). Then (3.5) implies P ((Z) ∈ E) = 0.
So £((Z)) << λT .

Since λ (∂T ) = 0, £((Z)) << λT implies that P ((Z) ∈ ∂T ) = 0. Therefore, if
we define s : Γ∞0 → R by

s (x1, x2, ...) :=
∞∑
i=1

M−ixi,

If Γ∞0 is equipped with the product topology, s is continuous. By Proposition 2,
for every Borel set F the following holds true:

£ ((Z)) (F ) = £

( ∞∑
i=1

M−iξi

)
(F ) = P (s (ξ1, ξ2, ...) ∈ F )(3.6)

= P
(
(ξ1, ξ2, ...) ∈ s−1(F )

)
= µ

(
s−1(F )

)
,

where µ = £ (ξ1, ξ2, ...). Corollary 1 assures that the sequence {ξk}∞k=1 is stationary
and ergodic. Let µ′ = £ (ξ′1, ξ

′
2, ...), where {ξ′k}

∞
k=1 is an i.i.d. sequence with ξ′1

uniform on Γ0. Suppose that µ 6= µ′. Then by Lemma 1, µ⊥µ′. So there is a set
B ⊂ B (Γ∞0 ) such that µ (B) = 1 and µ′ (B) = 0. Set A = s (B). Since Γ∞0 is a
Polish space and s is continuous, A being the continuous image of a Borel set, is
an analytic set. As such, A is universally measurable [13]. Let C and D be Borel
sets so that C ⊆ A ⊆ D and λ(C) = λ(A) = λ(D). Since the Lebesgue measure of
boundary of a tile is 0, we may assume that C does not contain any points on the
boundary of tiles (the union of the tiles boundaries is a Borel set). This implies
that s−1(C) ⊆ B. From the proof of 2) ⇒ 1) it follows that £(s(ξ′1, ξ

′
2, ...)) = λT .

Now

0 = µ′ (B) = P ((ξ′1, ξ
′
2, . . . ) ∈ B) ≥ P ((ξ′1, ξ

′
2, . . . ) ∈ s−1(C))

= P (s (ξ′1, ξ
′
2, . . . ) ∈ C) = λT (C) = λT (A).
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We also have that

1 = µ (B) = P ((ξ1, ξ2, . . . ) ∈ B) ≤ P (s(ξ1, ξ2, . . . ) ∈ D) = £ ((Z)) (A)

where the last equality follows from (3.6). This contradicts the fact that £ ((Z)) <<
λT . Therefore µ = µ′, i.e. ξi, i = 1, 2, ..., are i.i.d. and ξ1 is uniform on Γ0. This
completes the proof of 3)⇒ 2) and thus of Theorem 1.

4. Conditions for independence of {ξk}
In Theorem 1, the existence of a density of the solution Z to (1.2) is equivalent to

the fact that the stationary, ergodic sequence {ξk}∞k=1 is a sequence of independent
random variables and that ξ1 is uniform on Γ0. In this section we first investigate
the effects of uniformity of ξ1 on the distributions of G1 and [Z1]; the results are
then summarized in Theorem 2. In Theorem 3, we give a sufficient condition on
G1 for the independence and uniformity of the sequence {ξk}∞k=1 .

By Proposition 3, ξk = h (Gk + [Zk]) a.s., provided that P ((Z0) ∈ ∂T ) = 0. In
order to describe the effects of uniformity of ξk, it suffices to consider the relation-
ship between G1, [Z1] and ξ1.

Let pi = P ([Z1] ∼= γi) and qi = P (G1
∼= γi) for i = 0, 1, . . . ,m− 1, where γ ∼= γi

means that the lattice point γ is in the coset represented by γi. Recalling that G1

and Z1 are independent we have

P (ξ1 = γk) = P (h (G1 + [Z1]) = γk)

=
∑

γi+γj∼=γk

P (G1
∼= γi, [Z1] ∼= γj)

=
∑

γi+γj∼=γk
P (G1

∼= γi)P ([Z1] ∼= γj)

=
∑

γi+γj∼=γk
qipj .

Due to the uniqueness of equivalence class representatives, there are exactly m
terms in the right-hand sides the equation. Now if pi = 1

m for all i or qi = 1
m for

all i then ξi are uniform. Assuming that ξ1 is uniform on Γ0 = {γ0, . . . , γm−1} we
have,

1
m

= q0p0 + q1p1 + · · ·+ qm−1pm−1,

1
m

= qm−1p0 + q0p1 + · · ·+ qm−2pm−1,

1
m

= qm−2p0 + qm−1p1 + · · ·+ qm−3pm−1,

· · ·
1
m

= q1p0 + q2p1 + · · ·+ q0pm−1,

or, in matrix form, QX = 1
m

[
1 1 · · · 1

]T , where X =
[
p0 p1 · · · pm−1

]T
.

Notice that the rows as well as the columns of Q sum to 1. Without loss of
generality, we may assume that q0 ≥ q1 ≥ · · · ≥ qm−1; if not, just reindex Γ0

so that this ordering holds. It is obvious that pi = 1
m , i = 0, . . . ,m−1, is a solution

of the system; we will show that it is unique by showing that the eigenvalues of the
matrix Q are different from zero.
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Let αk be the kth root of zm = 1. Direct computation shows that the eigenvalues

of Q are ηk =
m−1∑
j=0

qjα
j
k and the associated eigenvectors are

vk =
[

1 αk α2
k · · · αm−1

k

]T
,

for k = 0, 1, ...,m− 1.

Remark 1. If k ∈ {0, 1, ...,m− 1} and m are relatively prime, then{
e

2πijk
m |j = 0, 1, ...,m− 1

}
is equal to the set of distinct roots of zm = 1.

Definition 1. We say that the set {qj}m−1
j=0 has a cycle of length r if

q0 = q1 = · · · = qr−1,

qr = qr+1 = · · · = q2r−1,

. . . ,

qm−r = · · · = qm−1.

The trivial case r = 1 is excluded.

So, for example, the set
{

1
4 ,

1
4 ,

1
5 ,

1
5 ,

1
20 ,

1
20

}
has a cycle of length 2 while the set{

1
4 ,

1
4 ,

1
6 ,

1
6 ,

1
6

}
has no cycle. Note that if {qj}m−1

j=0 has a cycle of length r, then r

divides m.

Lemma 2. Zero is an eigenvalue of Q if and only if {qj}m−1
j=0 has a cycle.

Proof. (⇐) The case of a cycle of length m is trivial.
Now consider a cycle of length r, where r < m. Denote the greatest common

divisor of m and r by (m, r). We claim that ηm
r

= 0 (recall that r divides m).
Since{qj}m−1

j=0 has a cycle of length r and 2πijmr
m = 2πij

r , we have

ηm
r

=
r−1∑
j=0

qje
2πij
r +

2r−1∑
j=r

qje
2πij
r + · · ·+

m−1∑
j=(m,r)−1

qje
2πij
r

= q0

r−1∑
j=0

e
2πij
r + qr

2r−1∑
j=r

e
2πij
r + · · ·+ q(m,r)−1

m−1∑
j=(m,r)−1

e
2πij
r

= 0.

(⇒) The assumption that there is no cycle implies q0 > qm−1. First we will
show that ηk 6= 0 in the case that (k,m) = 1. Define l0 := max {k : qk = q0} and
inductively li+1 := max {k : qk = qli+1} , i = 0, 1, 2, . . . , n − 2, that is, there are n
different values in the set of q’s. Notice that ln−1 = m− 1 and ql0 = q0. Now,

ηk

(
1− e 2πik

m

)
= q0 + (q1 − q0) e

2πik
m + · · ·+ (qm−1 − qm−2) e

2πik(m−1)
m − qm−1e

2πikm
m

= (q0 − qm−1) + (q1 − q0) e
2πik
m + · · ·+ (qm−1 − qm−2) e

2πik(m−1)
m

=
(
ql0 − qln−1

)
+ (ql0+1 − ql0) e

2πik
m (l0+1) + (ql1+1 − ql1) e

2πik
m (l1+1)

+ · · ·+
(
qln−2+1 − qln−2

)
e

2πik
m (ln−2+1).
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If we set

z0 = (ql0 − ql0+1) e
2πik
m (l0+1) + · · ·+

(
qln−2 − qln−2+1

)
e

2πik
m (ln−2+1),

we have ηk
(

1− e 2πik
m

)
= q0 − qm−1 − z0, and∣∣∣ηk (1− e 2πik

m

)∣∣∣ ≥ q0 − qm−1 − |z0| .

We claim |z0| < q0 − qm−1. Observe

|z0| ≤ ql0 − ql0+1

+
∣∣∣(ql1 − ql1+1) e

2πik
m (l1+1) + · · ·+

(
qln−2 − qln−2+1

)
e

2πik
m (ln−2+1)

∣∣∣
≤ ql0 − qln−4+1 +

∣∣∣(qln−3 − qln−3+1

)
+
(
qln−2 − qln−2+1

)
e

2πik
m (ln−2−ln−3)

∣∣∣ .
Since k > 0, and k and m are relatively prime, e

2πik
m (ln−2−ln−3) has a nonzero

imaginary part and so
(
qln−2 − qln−2+1

)
e

2πik
m (ln−2−ln−3) cannot be a positive scalar

multiple of qln−3 − qln−3+1. Therefore

|z0| < ql0 − qln−4+1 + qln−3 − qln−3+1 +
∣∣∣(qln−2 − qln−2+1

)
e

2πik
m (ln−2−ln−3)

∣∣∣
= q0 − qm−1.

So
∣∣∣ηk (1− e 2πik

m

)∣∣∣ ≥ q0 − qm−1 − |z0| > 0, which completes the case (k,m) = 1.
Suppose now that (k,m) > 1. Set

m1 :=
m

(k,m)
, k1 :=

k

(k,m)
and q′j =

∑
i∼=j

qi,

where i ∼= j means i = jmodm1. Notice that q′0 ≥ q′1 ≥ · · · ≥ q′m1−1and (k1,m1) =
1. Rewriting ηk as

ηk =
m−1∑
j=0

qje
2πijk
m =

m1−1∑
j=0

q′je
2πijk1
m1 ,

we may apply the previous case because the absence of a cycle implies q′0 > q′m1−1.

We can summarize the above in the following theorem: (Recall that pi =
P ([Z1] ∼= γi) and qi = P (G1

∼= γi).)

Theorem 2. The random variable ξ1 is uniform on Γ0 if and only if one of the
following two statements holds:

(i) if {qj}m−1
j=1 has no cycles, then pi = 1

m for i = 0, . . . ,m− 1, or

(ii) if {pj}m−1
j=1 has no cycles, then qi = 1

m for i = 0, . . . ,m− 1.

The next theorem gives a condition on the distribution ofG1 which will guarantee
the independence of the sequence {ξk}∞k=1 .

Theorem 3. If P (G1
∼= γi) = 1

m for i = 1, . . . ,m, then ξ1, ξ2, ... are independent
and ξ1 is uniform.
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Proof. Uniformity of ξ1 follows from Theorem 2. Let k1 < k2 < · · · < kn. We
proceed by induction on n.

Suppose n = 2. Then

P (ξk1 = γk1 , ξk2 = γk2) = P (Gk1 + [Zk1 ] ∼= γk1 , ξk2 = γk2)

=
m−1∑
i=0

P
(
Gk1
∼= γi, [Zk1 ] ∼= γj(i), ξk2 = γk2

)
=

m−1∑
i=0

P (Gk1
∼= γi)P

(
[Zk1 ] ∼= γj(i), ξk2 = γk2

)
where γi+γj(i) ∼= γk1 , and the last equality is due to the fact that Gk1 is independent
of [Zk1 ] and of ξk2 . Notice that when γi runs through Γ0, so does γj(i), and since
P (Gk1

∼= γi) = 1
m , we obtain

P (ξk1 = γk1 , ξk2 = γk2) =
1
m

m−1∑
i=0

P
(
[Zk1 ] ∼= γj(i), ξk2 = γk2

)
=

1
m
P (ξk2 = γk2)

= P (ξk1 = γk1)P (ξk2 = γk2) .

Now assume P (ξk1 = γk1 , ..., ξkn = γkn) =
n∏
i=1

P (ξki = γki). Consider

P
(
ξk1 = γk1 , ..., ξkn = γkn , ξkn+1 = γkn+1

)
= P

(
ξk1 = γk1 , ..., Gkn + [Zkn ] ∼= γkn , ξkn+1 = γkn+1

)
=
m−1∑
i=0

P
(
ξk1 = γk1 , ..., Gkn

∼= γi, [Zkn ] ∼= γj(i), ξkn+1 = γkn+1

)
,

where γi + γj(i) ∼= γkn . Now, Gkn is independent of [Zkn ] and of ξkn+1 ; by the
inductive hypothesis, Gkn is also independent of ξk1 , . . . , ξkn−1 . Thus

m−1∑
i=0

P
(
ξk1 = γk1 , ..., Gkn

∼= γi, [Zkn ] ∼= γj(i), ξkn+1 = γkn+1

)
=

m−1∑
i=0

P (Gkn ∼= γi)P
(
ξk1 = γk1 , ..., [Zkn ] ∼= γj(i), ξkn+1 = γkn+1

)
=

1
m

m−1∑
i=0

P
(
ξk1 = γk1 , ..., [Zkn ] ∼= γj(i), ξkn+1 = γkn+1

)
=

1
m
P
(
ξk1 = γk1 , ..., ξkn−1 = γkn−1 , ξkn+1 = γkn+1

)
= P (ξkn = γkn)

n+1∏
i6=n,i=1

P (ξki = γki)

by the inductive hypothesis. So by induction, we have shown that {ξk}∞k=1 is an
independent sequence.

Remark. Theorem 2 is symmetric in [Z] and G, but Theorem 3 is not; that is,
if P ([Zk] = γ) = 1

m for all γ ∈ Γ0 but P (Gk = γ0) > 1
m for some γ0 ∈ Γ0, the
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sequence {ξk}∞k=1 is not necessarily independent. This is illustrated in the following
example: M = 2, Γ = Z (the integers) and Γ0 = {0, 1}. Let G be such that
P (G = 0) = P (G = 1) = P (G = 2) = 1

3 . So P (G ∼= 0) = P (G is even) = 2
3 and

P (G ∼= 1) = P (G is odd) = 1
3 . Then we have

P ([Z1] even) = P (0 ≤ Z1 < 1) + P (Z1 = 2)
= P (G1 = 0) + P (G1 = 1, G2 = 0) + · · ·

=
1
3

∞∑
k=0

(
1
3

)k
=

1
2
.

Therefore ξ1 is uniform on Γ0 by Theorem 2. However, the sequence {ξk}∞k=1 is not
independent. Consider P (ξ1 = 0, ξ2 = 0):

P (ξ1 = 0, ξ2 = 0)

= P (G1 + [Z1] ∼= 0, ξ2 = 0)

= P (G1
∼= 0, [Z1] ∼= 0, ξ2 = 0) + P (G1

∼= 1, [Z1] ∼= 1, ξ2 = 0)

=
2
3
P ([Z1] ∼= 0, ξ2 = 0) +

1
3
P ([Z1] ∼= 1, ξ2 = 0) .

To compute the two remaining probabilities, note that

[Z1] =

[ ∞∑
k=1

2−kGk+1

]
=
[
G2 + [Z2]

2
+

(Z2)
2

]
.

If ξ2 = 0, G2 + [Z2] is even, so in this case, [Z1] = G2+[Z2]
2 , and if [Z1] = G2+[Z2]

2 ,
then ξ2 = 0. This implies that

2
3
P ([Z1] ∼= 0, ξ2 = 0) +

1
3
P ([Z1] ∼= 1, ξ2 = 0)

=
2
3
P

(
[Z1] ∼= 0, [Z1] =

G2 + [Z2]
2

)
+

1
3
P

(
[Z1] ∼= 1, [Z1] =

G2 + [Z2]
2

)
=

2
3
P (G2 + [Z2] ∼= 0 mod 4) +

1
3
P (G2 + [Z2] ∼= 2 mod 4)

=
2
3

(P (G2 = 0, [Z2] = 0) + P (G2 = 2, [Z2] = 2))

+
1
3

(P (G2 = 0, [Z2] = 2) + P (G2 = 2, [Z2] = 0) + P (G2 = 1, [Z2] = 1))

=
2
3

(
1
2
· 1

3
+ 0
)

+
1
3

(
0 +

1
3
· 1

2
+

1
3
· 1

2

)
=

2
9
6= 1

4
= P (ξ1 = 0)P (ξ2 = 0) .

Since the sequence {ξk}∞k=1 is not independent, by Theorem 1, £ (Z) is not abso-
lutely continuous with respect to Lebesgue measure for this example. Thus, the
assumption that ξ1 is uniform does not necessarily imply the independence of the
sequence {ξk}∞k=1.

If the range of G is Γ0, then [Z] = 0. In this case G = ξ1 and the application of
Theorem 3 yields the following:
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Corollary 2. Suppose that the range of G is Γ0. Then

ϕ (x) =
∑
γ∈Γ0

c (γ)ϕ (Mx− γ) .

has a functional solution if and only if P (G = γ) = c (γ) = 1
m .

The result of Corollary 2 is known. It was first proved by Grochenig and Madych
(Theorem 2 in [5]) using different methods. The solution of the dilation equation
in this case is ϕ = 1√

λ(T )
1T . Scaling functions that are indicator functions over the

tile are used to construct “Haar-type” wavelet bases as discussed in detail in [5].

5. Examples

In this section we give several examples of density functions obtained by assigning
probabilities so that the hypotheses of Theorem 3 are satisfied.

In most cases, there is no closed form for the density function [14]; those which
cannot be computed explicitly can be numerically approximated by computing the
function values on the points of

{
M−kΓ | k = 0, . . . , k0

}
for some k0, via the dilation

equation. To obtain the approximation of the graph of ϕ, first the values of ϕ at
the integers are found by considering the vector of integer values as an eigenvector
of eigenvalue 1 for a matrix of coefficients [14]. Then, using the scaling relation
(1.1), the values of ϕ can be found at all points in M−1Γ. Repeatedly applying
(1.1) k0 times and plotting the results gives an approximation to the graph of ϕ.
Questions of convergence of the approximations are discussed in [3].

For each of the following examples, the eigenvalue problem for a matrix corre-
sponding to a set containing the support of ϕ was solved to obtain the values at the
lattice points. Then the above algorithm was applied, resulting in approximately
2000 points plotted for each graph approximation.

Example 1. Let d = 1, M = 2, Γ = Z and Γ0 = {0, 1} . Suppose the range of
G is Γ1 = {0, 1, 2, 3} with the following weight assignments: c (0) = .2, c (1) = .4,
c (2) = .3, c (3) = .1. Then the density function ϕ is continuous [2] and is pictured
in Figure 1 along with a four-coefficient spline function for comparison.

Example 2. Suppose d = 2, Γ = Z2, Γ0 = {(0, 0) , (1, 0) , (0, 1) , (1, 1)} and

M =
[

2 0
0 2

]
.

Define G to have values in Γ1 = [0, 2]2 ∩Z2 with the following probability distribu-
tion:

c ((0, 0)) = c ((2, 0)) = c ((0, 2)) = c ((2, 2)) =
1
16
,

c ((1, 0)) = c ((0, 1)) = c ((2, 1)) = c ((1, 2)) =
1
8
,

c ((1, 1)) =
1
4
.

Since G is clearly the convolution of two independent copies of a uniform random
variable on the unit square, ϕ is continuous. The graph of the density function is
pictured in Figure 2.
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Figure 1.

Figure 2.

Example 3. Let d = 2, M =
[

1 −1
1 1

]
, Γ = Z2 and Γ0 = {(0, 0) , (1, 0)} . Define

G to have values in Γ1 = {(0, 0) , (1, 0) , (2, 0)} with the following distribution:
c ((0, 0)) = 1

4 , c ((1, 0)) = 1
2 , c ((2, 0)) = 1

4 . The graph of the density function is
pictured in Figure 3. The density is a convolution of two indicator functions of the
twin dragon tile and therefore it is continuous.



DILATION EQUATION 4797

Figure 3.

6. A necessary condition for multidimensional prescale functions

Suppose ϕ is a functional solution of the dilation equation (1.1). If the lattice
translates of ϕ form a Riesz basis, that is, for some positive constants C1, C2

C1

√∑
(a (γ))2 ≤

∥∥∥∑ a (γ)ϕ (· − γ)
∥∥∥
L2(Rd)

≤ C2

√∑
(a (γ))2

,

then ϕ is said to be stable. We show that the condition
∑
γ∼=δ

c (γ) = 1
m for each

δ ∈ Γ0, where m = |detM |, which was sufficient for the existence of a functional
solution to (1.1), is necessary for the stability of ϕ.

The Fourier transform version of the dilation equation (1.1) is

ϕ̂ (ζ) = ϕ̂
(
M∗−1ζ

)
A
(
M∗−1ζ

)
,(6.1)

where A (ζ) =
∑
γ∈Γ

c (γ) e−iγ·ζ . Stability of ϕ is equivalent to

0 < C1 ≤
∑
k∈Γ

|ϕ̂ (ζ + 2πk)|2 ≤ C2 a.e.(6.2)

In the case that the coefficient sequence c := {c (γ)}γ∈Γ is finitely supported, the
function in (6.2) is a polynomial [12] and so the inequality must hold everywhere.
In the theorem below, which is known (see, for example, [9]), we will assume that
the equation holds everywhere. This is not a restriction as proved in [4]. For
completeness we include a short proof.

Theorem 4. Let ϕ ∈ L2
(
Rd
)

be a solution of the dilation equation (1.1). Suppose
ϕ is stable and that equation (6.2) holds everywhere. Then

∑
γ∼=γ0

c (γ) = 1
m for each

γ0 ∈ Γ0.
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Proof. Without loss of generality, we assume Γ = Zd. Since ϕ is stable, (6.2) holds.
Applying equation (6.1) we obtain

0 < C1 ≤
∑
k∈Zd

|ϕ̂ (ζ + 2πk)|2

=
∑
γ∈Γ0

∣∣A (M∗−1ζ + 2πM∗−1γ
)∣∣2 ∑

k′∈Zd

∣∣ϕ̂ (M∗−1ζ + 2π
(
M∗−1γ + k′

))∣∣2 .
For ζ = 0, we get∑

k∈Zd

|ϕ̂ (2πk)|2 =
∑

γ∈Γ0\{0}

∣∣A (2πM∗−1γ
)∣∣2 ∑

k′∈Zd

∣∣ϕ̂ (2π (M∗−1γ + k′
))∣∣2

+ |A (0)|2
∑
k′∈Zd

|ϕ̂ (2πk′)|2 .

Since by [3] A (0) = 1, and since
∑
k′∈Zd

∣∣ϕ̂ (2π (M∗−1γ + k′
))∣∣2 ≥ C1 > 0, we have∑

k∈Zd

c (k) e−i2π(M∗−1γ)·k = 0 for each γ ∈ Γ0 \ {0} ,

which, after letting k = γk+Mnk, γk ∈ Γ0, nk ∈ Zd and setting
∑
k∼=δ

c (γk +Mnk) =

qδ leads to

0 =
∑
δ∈Γ0

e−i2πγ·M
−1δqδ.(6.3)

Claim.
∑
δ∈Γ0

e−i2πγ·M
−1δ = 0 for each γ ∈ Γ0 \ {0} .

Notice that the set
{
e−i2πγ·M

−1δ | δ ∈ Γ0

}
is a group on the unit circle. If∑

δ∈Γ0

e−i2πγ·M
−1δ = r 6= 0,(6.4)

then for every γ ∈ Γ0\ {0} there is a δ ∈ Γ0 so that e−i2πγ·M
−1δ 6= 1. (If not,

e−i2πγ·M
−1δ = 1 for all δ ∈ Γ0 implies that

0 =
∑
δ∈Γ0

∑
k:k∼=δ

c (γk +Mnk) =
∑

c (γ) ,

contradicting
∑
c (γ) = 1.) Multiplying both sides of (6.4) by e−i2πγ·M

−1p where
p ∈ Γ0 is such that e−i2πγ·M

−1p 6= 1, we obtain∑
δ∈Γ0

e−i2πγ·M
−1(δ+p) = re−i2πγ·M

−1p.

Note that since δ+p = δ′+Mk, where δ′ ∈ Γ0 and k ∈ Zd, then
∑
δ∈Γ0

e−i2πγ·M
−1(δ+p)

includes all the elements of the group and nothing more, and therefore it is equal
to r. So r = re−i2πγ·M

−1p, contradicting e−i2πγ·M
−1p 6= 1.
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The set of m− 1 equations
∑
δ∈Γ0

e−i2πγ·M
−1δqδ = 0 for each γ ∈ Γ0 \ {0} , along

with the constraint
∑
δ∈Γ0

qδ = 1, comprises a system of m equations with m variables

qδ. Notice that qδ = 1
m for each δ ∈ Γ0 is a solution. The coefficient matrix for this

system is given by

U =
(
e−i2πγi·M

−1γj
)

0≤i,j≤m−1
.

By (6.3), UU∗ = mIm, and so detU 6= 0. Therefore qδ = 1
m for all δ ∈ Γ0 is the

unique solution of the system, which concludes the proof of the theorem.
If, as in the previous section, we let c (γ) = P (G = γ), the above theorem says

that P (G ∼= γ) = 1
m for each γ ∈ Γ0 is necessary in order for the density ϕ to be

stable. However, this condition, which by Theorems 1 and 3 guarantees that ϕ is
absolutely continuous, is not sufficient for the stability of ϕ. Consider the following
example: Γ = Z, M = 2 with the constants assigned as follows:

c (0) = c (2) = c (3) = c (5) =
1
8
,

c (1) = c (4) =
1
4
.

Notice that the two cosets have equal weight and so by Theorems 1 and 3 the
solution ϕ of the dilation equation will be a density function. However, it is shown
in [11] that ϕ is not stable.
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