Representation type of $q$-Schur algebras
HTML articles powered by AMS MathViewer
- by Karin Erdmann and Daniel K. Nakano
- Trans. Amer. Math. Soc. 353 (2001), 4729-4756
- DOI: https://doi.org/10.1090/S0002-9947-01-02849-5
- Published electronically: July 11, 2001
- PDF | Request permission
Abstract:
In this paper we classify the $q$-Schur algebras having finite, tame or wild representation type and also the ones which are semisimple.References
- Anton Cox, The blocks of the $q$-Schur algebra, J. Algebra 207 (1998), no.Β 1, 306β325. MR 1643114, DOI 10.1006/jabr.1998.7442
- Anton Cox, $\textrm {Ext}^1$ for Weyl modules for $q$-$\textrm {GL}(2,k)$, Math. Proc. Cambridge Philos. Soc. 124 (1998), no.Β 2, 231β251. MR 1631095, DOI 10.1017/S0305004198002679
- Anton Cox and Karin Erdmann, On $\textrm {Ext}^2$ between Weyl modules for quantum $\textrm {GL}_n$, Math. Proc. Cambridge Philos. Soc. 128 (2000), no.Β 3, 441β463. MR 1744109, DOI 10.1017/S0305004199004296
- Richard Dipper and Stephen Donkin, Quantum $\textrm {GL}_n$, Proc. London Math. Soc. (3) 63 (1991), no.Β 1, 165β211. MR 1105721, DOI 10.1112/plms/s3-63.1.165
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no.Β 1, 20β52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Richard Dipper and Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), no.Β 1, 57β82. MR 872250, DOI 10.1112/plms/s3-54.1.57
- S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series 253 (1998), CUP.
- Stephen R. Doty, Karin Erdmann, Stuart Martin, and Daniel K. Nakano, Representation type of Schur algebras, Math. Z. 232 (1999), no.Β 1, 137β182. MR 1714283, DOI 10.1007/PL00004755
- Stephen R. Doty and Daniel K. Nakano, Semisimple Schur algebras, Math. Proc. Cambridge Philos. Soc. 124 (1998), no.Β 1, 15β20. MR 1620564, DOI 10.1017/S0305004197002466
- K. Erdmann, D.K. Nakano, Representation type of Hecke algebras of type $A$, to appear in Transactions of AMS.
- Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107, DOI 10.1007/BFb0084003
- Karin Erdmann, Schur algebras of finite type, Quart. J. Math. Oxford Ser. (2) 44 (1993), no.Β 173, 17β41. MR 1206201, DOI 10.1093/qmath/44.1.17
- James A. Green, Polynomial representations of $\textrm {GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556
- Gordon James, The decomposition matrices of $\textrm {GL}_n(q)$ for $n\le 10$, Proc. London Math. Soc. (3) 60 (1990), no.Β 2, 225β265. MR 1031453, DOI 10.1112/plms/s3-60.2.225
- Gordon James and Andrew Mathas, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), no.Β 2, 241β274. MR 1425323, DOI 10.1112/S0024611597000099
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Stuart Martin, Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol. 112, Cambridge University Press, Cambridge, 1993. MR 1268640, DOI 10.1017/CBO9780511470899
- B. Parshall, J.P Wang, Quantum linear groups, Memoirs of the AMS 89 (1991).
- Claus Michael Ringel, On algorithms for solving vector space problems. II. Tame algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp.Β 137β287. MR 607143
- Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no.Β 2, 209β223. MR 1128706, DOI 10.1007/BF02571521
- Lars Thams, The subcomodule structure of the quantum symmetric powers, Bull. Austral. Math. Soc. 50 (1994), no.Β 1, 29β39. MR 1285656, DOI 10.1017/S0004972700009539
- Katsuhiro Uno, On representations of nonsemisimple specialized Hecke algebras, J. Algebra 149 (1992), no.Β 2, 287β312. MR 1172430, DOI 10.1016/0021-8693(92)90017-G
Bibliographic Information
- Karin Erdmann
- Affiliation: Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford, OX1 3LB, UK
- MR Author ID: 63835
- ORCID: 0000-0002-6288-0547
- Email: erdmann@maths.ox.ac.uk
- Daniel K. Nakano
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 310155
- ORCID: 0000-0001-7984-0341
- Received by editor(s): September 24, 1999
- Received by editor(s) in revised form: September 13, 2000
- Published electronically: July 11, 2001
- Additional Notes: Research of the second author partially supported by NSF grant DMS-9800960
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4729-4756
- MSC (2000): Primary 16G60, 20G42
- DOI: https://doi.org/10.1090/S0002-9947-01-02849-5
- MathSciNet review: 1852080