Maximal semigroups in semi-simple Lie groups
HTML articles powered by AMS MathViewer
- by Luiz A. B. San Martin
- Trans. Amer. Math. Soc. 353 (2001), 5165-5184
- DOI: https://doi.org/10.1090/S0002-9947-01-02868-9
- Published electronically: June 14, 2001
- PDF | Request permission
Abstract:
The maximal semigroups with nonempty interior in a semi-simple Lie group with finite center are characterized as compression semigroups of subsets in the flag manifolds of the group. For this purpose a convexity theory, called here $\mathcal {B}$-convexity, based on the open Bruhat cells is developed. It turns out that a semigroup with nonempty interior is maximal if and only if it is the compression semigroup of the interior of a $\mathcal {B}$-convex set.References
- T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987), 165–219. MR 884118, DOI 10.1016/0024-3795(87)90313-2
- Fritz Colonius and Wolfgang Kliemann, The dynamics of control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000. With an appendix by Lars Grüne. MR 1752730, DOI 10.1007/978-1-4612-1350-5
- Goodman, J.E.: When is a set of lines in space convex? Notices Amer. Math. Soc. 45 (1998), 222-232.
- Jacob E. Goodman and Richard Pollack, Foundations of a theory of convexity on affine Grassmann manifolds, Mathematika 42 (1995), no. 2, 305–328. MR 1376730, DOI 10.1112/S0025579300014613
- Joachim Hilgert, A note on Howe’s oscillator semigroup, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 3, 663–688 (English, with French summary). MR 1030844
- Joachim Hilgert and Karl-Hermann Neeb, Lie semigroups and their applications, Lecture Notes in Mathematics, vol. 1552, Springer-Verlag, Berlin, 1993. MR 1317811, DOI 10.1007/BFb0084640
- Joachim Hilgert and Karl-Hermann Neeb, Maximality of compression semigroups, Semigroup Forum 50 (1995), no. 2, 205–222. MR 1315512, DOI 10.1007/BF02573517
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089
- George Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 133–145. MR 1648700
- Dirk Mittenhuber, Compression semigroups in semisimple Lie groups: a direct approach, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 165–183. MR 1648702
- Osvaldo Germano do Rocio and Luiz A. B. San Martin, Semigroups in lattices of solvable Lie groups, J. Lie Theory 5 (1995), no. 2, 179–202. MR 1389428
- Luiz San Martin, Invariant control sets on flag manifolds, Math. Control Signals Systems 6 (1993), no. 1, 41–61. MR 1358060, DOI 10.1007/BF01213469
- Luiz A. B. San Martin, Order and domains of attraction of control sets in flag manifolds, J. Lie Theory 8 (1998), no. 2, 335–350. MR 1650350
- Luiz A. B. San Martin and Pedro A. Tonelli, Semigroup actions on homogeneous spaces, Semigroup Forum 50 (1995), no. 1, 59–88. MR 1301552, DOI 10.1007/BF02573505
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
Bibliographic Information
- Luiz A. B. San Martin
- Affiliation: Instituto de Matemática, Universidade Estadual de Campinas, Cx.Postal 6065, 13083-970 Campinas SP, Brasil
- Email: smartin@ime.unicamp.br
- Received by editor(s): March 18, 1999
- Received by editor(s) in revised form: March 29, 2001
- Published electronically: June 14, 2001
- Additional Notes: Research partially supported by CNPq grant n$^{\circ }$ $301060/94-0$.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 5165-5184
- MSC (2000): Primary 20M20, 22E20, 22F30
- DOI: https://doi.org/10.1090/S0002-9947-01-02868-9
- MathSciNet review: 1852099