Shellability in reductive monoids
HTML articles powered by AMS MathViewer
- by Mohan S. Putcha
- Trans. Amer. Math. Soc. 354 (2002), 413-426
- DOI: https://doi.org/10.1090/S0002-9947-01-02806-9
- Published electronically: August 30, 2001
- PDF | Request permission
Abstract:
The purpose of this paper is to extend to monoids the work of Björner, Wachs and Proctor on the shellability of the Bruhat-Chevalley order on Weyl groups. Let $M$ be a reductive monoid with unit group $G$, Borel subgroup $B$ and Weyl group $W$. We study the partially ordered set of $B\times B$-orbits (with respect to Zariski closure inclusion) within a $G\times G$-orbit of $M$. This is the same as studying a $W\times W$-orbit in the Renner monoid $R$. Such an orbit is the retract of a ‘universal orbit’, which is shown to be lexicograhically shellable in the sense of Björner and Wachs.References
- Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159–183. MR 570784, DOI 10.1090/S0002-9947-1980-0570784-2
- Anders Björner and Michelle Wachs, Bruhat order of Coxeter groups and shellability, Adv. in Math. 43 (1982), no. 1, 87–100. MR 644668, DOI 10.1016/0001-8708(82)90029-9
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- C. Chevalley, Sur les décompositions cellulaires des espaces $G/B$, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1–23 (French). With a foreword by Armand Borel. MR 1278698, DOI 10.1090/pspum/056.1/1278698
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- Gopal Danaraj and Victor Klee, Shellings of spheres and polytopes, Duke Math. J. 41 (1974), 443–451. MR 345113
- Corrado De Concini, Equivariant embeddings of homogeneous spaces, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 369–377. MR 934236
- C. De Concini and V. Lakshmibai, Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties, Amer. J. Math. 103 (1981), no. 5, 835–850. MR 630769, DOI 10.2307/2374249
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499–511. MR 782232, DOI 10.1007/BF01388520
- Stephen Doty, Polynomial representations, algebraic monoids, and Schur algebras of classical type, J. Pure Appl. Algebra 123 (1998), no. 1-3, 165–199. MR 1492900, DOI 10.1016/S0022-4049(96)00082-5
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Edwin A. Pennell, Mohan S. Putcha, and Lex E. Renner, Analogue of the Bruhat-Chevalley order for reductive monoids, J. Algebra 196 (1997), no. 2, 339–368. MR 1475115, DOI 10.1006/jabr.1997.7111
- Robert A. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982), no. 1, 104–126. MR 665167, DOI 10.1016/0021-8693(82)90280-0
- Mohan S. Putcha, A semigroup approach to linear algebraic groups, J. Algebra 80 (1983), no. 1, 164–185. MR 690712, DOI 10.1016/0021-8693(83)90026-1
- Mohan S. Putcha, Linear algebraic monoids, London Mathematical Society Lecture Note Series, vol. 133, Cambridge University Press, Cambridge, 1988. MR 964690, DOI 10.1017/CBO9780511600661
- M. S. Putcha and L. E. Renner, The system of idempotents and the lattice of $\mathcal I$-classes of reductive algebraic monoids, J. Algebra 116 (1988), 385–399.
- Lex E. Renner, Analogue of the Bruhat decomposition for algebraic monoids, J. Algebra 101 (1986), no. 2, 303–338. MR 847163, DOI 10.1016/0021-8693(86)90197-3
- Lex E. Renner, Analogue of the Bruhat decomposition for algebraic monoids. II. The length function and the trichotomy, J. Algebra 175 (1995), no. 2, 697–714. MR 1339663, DOI 10.1006/jabr.1995.1208
- Louis Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field, Geom. Dedicata 36 (1990), no. 1, 15–49. MR 1065211, DOI 10.1007/BF00181463
- Louis Solomon, An introduction to reductive monoids, Semigroups, formal languages and groups (York, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 466, Kluwer Acad. Publ., Dordrecht, 1995, pp. 295–352. MR 1630625
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- Ernest B. Vinberg, The asymptotic semigroup of a semisimple Lie group, Semigroups in algebra, geometry and analysis (Oberwolfach, 1993) De Gruyter Exp. Math., vol. 20, de Gruyter, Berlin, 1995, pp. 293–310. MR 1350337
Bibliographic Information
- Mohan S. Putcha
- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205
- Email: putcha@math.ncsu.edu
- Received by editor(s): November 24, 1999
- Received by editor(s) in revised form: November 6, 2000
- Published electronically: August 30, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 413-426
- MSC (2000): Primary 20G99, 20M99, 06A07
- DOI: https://doi.org/10.1090/S0002-9947-01-02806-9
- MathSciNet review: 1859281