On arithmetic Macaulayfication of Noetherian rings
HTML articles powered by AMS MathViewer
- by Takesi Kawasaki
- Trans. Amer. Math. Soc. 354 (2002), 123-149
- DOI: https://doi.org/10.1090/S0002-9947-01-02817-3
- Published electronically: June 6, 2001
- PDF | Request permission
Abstract:
The Rees algebra is the homogeneous coordinate ring of a blowing-up. The present paper gives a necessary and sufficient condition for a Noetherian local ring to have a Cohen-Macaulay Rees algebra: A Noetherian local ring has a Cohen-Macaulay Rees algebra if and only if it is unmixed and all the formal fibers of it are Cohen-Macaulay. As a consequence of it, we characterize a homomorphic image of a Cohen-Macaulay local ring. For non-local rings, this paper gives only a sufficient condition. By using it, however, we obtain the affirmative answer to Sharp’s conjecture. That is, a Noetherian ring having a dualizing complex is a homomorphic image of a finite-dimensional Gorenstein ring.References
- Ian M. Aberbach, Arithmetic Macaulayfications using ideals of dimension one, Illinois J. Math. 40 (1996), no. 3, 518–526. MR 1407634
- Y. Aoyama and S. Goto, A brief summary of the elements of the theory of dualizing complexes and Sharp’s conjecture, The curves seminar at Queen’s, Vol. IV (Kingston, Ont., 1985–1986) Queen’s Papers in Pure and Appl. Math., vol. 76, Queen’s Univ., Kingston, ON, 1986, pp. Exp. No. A, 24. MR 883966
- Y\B{o}ichi Aoyama and Shiro Goto, Some special cases of a conjecture of Sharp, J. Math. Kyoto Univ. 26 (1986), no. 4, 613–634. MR 864465, DOI 10.1215/kjm/1250520830
- Y\B{o}ichi Aoyama and Shiro Goto, A conjecture of Sharp—the case of local rings with $\textrm {dim}\,\textrm {nonCM}\leq 1$ or $\textrm {dim}\leq 5$, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 27–34. MR 977750
- Jacob Barshay, Graded algebras of powers of ideals generated by $A$-sequences, J. Algebra 25 (1973), 90–99. MR 332748, DOI 10.1016/0021-8693(73)90076-8
- Dave Bayer and Michael Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra, 1982–1994, Source and object code available for Unix and Macintosh computers. Contact the authors, or download from math.harvard.edu via anonymous ftp.
- Markus Brodmann, Local cohomology of certain Rees- and form-rings. I, J. Algebra 81 (1983), no. 1, 29–57. MR 696125, DOI 10.1016/0021-8693(83)90207-7
- Nguyễn Tụ’ Cu’ò’ng, $p$-standard systems of parameters and $p$-standard ideals in local rings, Acta Math. Vietnam. 20 (1995), no. 1, 145–161. MR 1346354
- Shiro Goto, Blowing-up of Buchsbaum rings, Commutative algebra: Durham 1981 (Durham, 1981) London Math. Soc. Lecture Note Ser., vol. 72, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 140–162. MR 693633
- Shiro Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983), no. 2, 490–534. MR 725097, DOI 10.1016/0021-8693(83)90109-6
- Shiro Goto and Yasuhiro Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ. 20 (1980), no. 4, 691–708. MR 592354, DOI 10.1215/kjm/1250522166
- Shiro Goto and Kikumichi Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint.
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Manfred Herrmann, Eero Hyry, and Jürgen Ribbe, On the Cohen-Macaulay and Gorenstein properties of multigraded Rees algebras, Manuscripta Math. 79 (1993), no. 3-4, 343–377. MR 1223028, DOI 10.1007/BF02568351
- Eero Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2213–2232. MR 1467469, DOI 10.1090/S0002-9947-99-02143-1
- Takesi Kawasaki, On Macaulayfication of Noetherian schemes, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2517–2552. MR 1707481, DOI 10.1090/S0002-9947-00-02603-9
- Takesi Kawasaki, On arithmetic Macaulayfication of certain local rings, Comm. Algebra 26 (1998), no. 12, 4385–4396. MR 1661269, DOI 10.1080/00927879808826417
- Kazuhiko Kurano, On Macaulayfication obtained by a blow-up whose center is an equi-multiple ideal, J. Algebra 190 (1997), no. 2, 405–434. With an appendix by Kikumichi Yamagishi. MR 1441955, DOI 10.1006/jabr.1996.6904
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Tetsushi Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ. 24 (1984), no. 1, 27–48. MR 737823, DOI 10.1215/kjm/1250521383
- Tetsushi Ogoma, Associated primes of fibre product rings and a conjecture of Sharp in lower-dimensional cases, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 6 (1985), 1–9. MR 772492
- Tetsushi Ogoma, Fibre products of Noetherian rings and their applications, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 2, 231–241. MR 771818, DOI 10.1017/S0305004100062794
- Idun Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. MR 296067, DOI 10.1090/S0002-9939-1972-0296067-7
- Peter Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Mathematics, vol. 907, Springer-Verlag, Berlin-New York, 1982 (German). With an English summary. MR 654151, DOI 10.1007/BFb0094123
- Peter Schenzel, Standard systems of parameters and their blowing-up rings, J. Reine Angew. Math. 344 (1983), 201–220. MR 716256, DOI 10.1515/crll.1983.344.201
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278.
- Rodney Y. Sharp, Acceptable rings and homomorphic images of Gorenstein rings, J. Algebra 44 (1977), no. 1, 246–261. MR 441957, DOI 10.1016/0021-8693(77)90180-6
- Rodney Y. Sharp, Necessary conditions for the existence of dualizing complexes in commutative algebra, Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978) Lecture Notes in Math., vol. 740, Springer, Berlin, 1979, pp. 213–229. MR 563505
- Yasuhiro Shimoda, A note on Rees algebras of two-dimensional local domains, J. Math. Kyoto Univ. 19 (1979), no. 2, 327–333. MR 545713, DOI 10.1215/kjm/1250522436
- G. Valla, Certain graded algebras are always Cohen-Macaulay, J. Algebra 42 (1976), no. 2, 537–548. MR 422249, DOI 10.1016/0021-8693(76)90112-5
Bibliographic Information
- Takesi Kawasaki
- Affiliation: Department of Mathematics, Tokyo Metropolitan University, Hachioji-shi Minami-Ohsawa 1-1, Tokyo 192-0397, Japan
- Email: kawasaki@comp.metro-u.ac.jp
- Received by editor(s): February 15, 2000
- Published electronically: June 6, 2001
- Additional Notes: The author is partially supported by Grant-in-Aid for Co-Operative Research
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 123-149
- MSC (1991): Primary 13A30; Secondary 13D45, 13H10
- DOI: https://doi.org/10.1090/S0002-9947-01-02817-3
- MathSciNet review: 1859029