Topological mixing in $CAT\left (-1\right )$-spaces
HTML articles powered by AMS MathViewer
- by Charalambos Charitos and Georgios Tsapogas
- Trans. Amer. Math. Soc. 354 (2002), 235-264
- DOI: https://doi.org/10.1090/S0002-9947-01-02862-8
- Published electronically: August 21, 2001
- PDF | Request permission
Abstract:
If $X$ is a proper $CAT\left ( -1\right )$-space and $\Gamma$ a non-elementary discrete group of isometries acting properly discontinuously on $X,$ it is shown that the geodesic flow on the quotient space $Y=X/\Gamma$ is topologically mixing, provided that the generalized Busemann function has zeros on the boundary $\partial X$ and the non-wandering set of the flow equals the whole quotient space of geodesics $GY:=GX/ \Gamma$ (the latter being redundant when $Y$ is compact). Applications include the proof of topological mixing for (A) compact negatively curved polyhedra, (B) compact quotients of proper geodesically complete $CAT\left ( -1\right )$-spaces by a one-ended group of isometries and (C) finite $n$-dimensional ideal polyhedra.References
- D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature. , Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by S. Feder. MR 0242194
- Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, BirkhÀuser Verlag, Basel, 1995. With an appendix by Misha Brin. MR 1377265, DOI 10.1007/978-3-0348-9240-7
- W. Ballman, E. Ghys, A. Haefliger, P. de la Harpe, E. Salem, R. Strebel and M. Troyanov, Sur les groups hyperboliques dâaprĂ©s Gromov (Seminaire de Berne), Ă©ditĂ© par E. Ghys et P. de la Harpe, (a paraitre chez BirkhĂ€user), 1990.
- Marc Bourdon, Structure conforme au bord et flot gĂ©odĂ©sique dâun $\textrm {CAT}(-1)$-espace, Enseign. Math. (2) 41 (1995), no. 1-2, 63â102 (French, with English and French summaries). MR 1341941
- B. H. Bowditch, Boundaries of geometrically finite groups, Math. Z. 230 (1999), no. 3, 509â527. MR 1680044, DOI 10.1007/PL00004703
- B. H. Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3673â3686. MR 1624089, DOI 10.1090/S0002-9947-99-02388-0
- Martin R. Bridson, Geodesics and curvature in metric simplicial complexes, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 373â463. MR 1170372
- Christophe Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math. (6) 3 (1994), no. 2, 161â221 (French, with English and French summaries). MR 1283206, DOI 10.5802/afst.778
- C. Charitos, A. Papadopoulos, The geometry of ideal polyhedra, to appear in Glasgow Journal of Mathematics.
- Charalambos Charitos and Georgios Tsapogas, Geodesic flow on ideal polyhedra, Canad. J. Math. 49 (1997), no. 4, 696â707. MR 1471051, DOI 10.4153/CJM-1997-033-8
- C. Charitos, Closed geodesics on ideal polyhedra of dimension $2$, Rocky Mountain J. Math. 26 (1996), no. 2, 507â521. MR 1406493, DOI 10.1216/rmjm/1181072071
- Charalambos Charitos and Georgios Tsapogas, Complexity of geodesics on $2$-dimensional ideal polyhedra and isotopies, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 2, 343â358. MR 1426528, DOI 10.1017/S030500419600120X
- C. Charitos, G. Tsapogas, Approximation of recurrence in negatively curved metric spaces, Pacific J. Math. 195 (2000), 67â79.
- Michel Coornaert, Sur les groupes proprement discontinus dâisomĂ©tries des espaces hyperboliques au sens de Gromov, Publication de lâInstitut de Recherche MathĂ©matique AvancĂ©e [Publication of the Institute of Advanced Mathematical Research], vol. 444, UniversitĂ© Louis Pasteur, DĂ©partement de MathĂ©matique, Institut de Recherche MathĂ©matique AvancĂ©e, Strasbourg, 1990 (French). Dissertation, UniversitĂ© Louis Pasteur, Strasbourg, 1990. MR 1116319
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc. 178 (1973), 57â82. MR 314084, DOI 10.1090/S0002-9947-1973-0314084-0
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75â263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Saâar Hersonsky and FrĂ©dĂ©ric Paulin, On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997), no. 3, 349â388. MR 1476054, DOI 10.1007/s000140050022
- Vadim A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math. 455 (1994), 57â103. MR 1293874, DOI 10.1515/crll.1994.455.57
- G. Moussong, Hyperbolic Coxeter groups, Doctoral Dissertation, Ohio State University, 1988.
- FrĂ©dĂ©ric Paulin, Constructions of hyperbolic groups via hyperbolizations of polyhedra, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 313â372. MR 1170371
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730, DOI 10.1007/978-1-4757-4013-4
- W.P. Thurston, The Geometry and Topology of Three-manifolds, Lecture notes, Princeton University, Princeton, NJ (1979).
Bibliographic Information
- Charalambos Charitos
- Affiliation: Department of Mathematics, Agricultural University of Athens, 75 Iera Odos, Athens, Greece
- Email: bakis@auadec.aua.gr
- Georgios Tsapogas
- Affiliation: Department of Mathematics, University of The Aegean, Karlovassi, Samos 83200, Greece
- Email: gtsap@aegean.gr
- Received by editor(s): August 13, 1999
- Received by editor(s) in revised form: May 18, 2000
- Published electronically: August 21, 2001
- Additional Notes: This research was supported in part by Research Unit Grant 470
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 235-264
- MSC (2000): Primary 57M20; Secondary 53C23
- DOI: https://doi.org/10.1090/S0002-9947-01-02862-8
- MathSciNet review: 1859274