## Tenth order mock theta functions in Ramanujan’s lost notebook (IV)

HTML articles powered by AMS MathViewer

- by Youn-Seo Choi
- Trans. Amer. Math. Soc.
**354**(2002), 705-733 - DOI: https://doi.org/10.1090/S0002-9947-01-02861-6
- Published electronically: September 21, 2001
- PDF | Request permission

## Abstract:

Ramanujan’s lost notebook contains many results on mock theta functions. In particular, the lost notebook contains eight identities for tenth order mock theta functions. Previously the author proved the first six of Ramanujan’s tenth order mock theta function identities. It is the purpose of this paper to prove the seventh and eighth identities of Ramanujan’s tenth order mock theta function identities which are expressed by mock theta functions and a definite integral. L. J. Mordell’s transformation formula for the definite integral plays a key role in the proofs of these identities. Also, the properties of modular forms are used for the proofs of theta function identities.## References

- George E. Andrews and Dean Hickerson,
*Ramanujan’s “lost” notebook. VII. The sixth order mock theta functions*, Adv. Math.**89**(1991), no. 1, 60–105. MR**1123099**, DOI 10.1016/0001-8708(91)90083-J - Bruce C. Berndt,
*Ramanujan’s notebooks. Part III*, Springer-Verlag, New York, 1991. MR**1117903**, DOI 10.1007/978-1-4612-0965-2 - Bruce C. Berndt,
*Ramanujan’s notebooks. Part IV*, Springer-Verlag, New York, 1994. MR**1261634**, DOI 10.1007/978-1-4612-0879-2 - Bruce C. Berndt and Robert A. Rankin,
*Ramanujan*, History of Mathematics, vol. 9, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1995. Letters and commentary. MR**1353909**, DOI 10.1090/hmath/009 - Youn-Seo Choi,
*Tenth order mock theta functions in Ramanujan’s lost notebook*, Invent. Math.**136**(1999), no. 3, 497–569. MR**1695205**, DOI 10.1007/s002220050318 - Y.-S. Choi,
*Tenth order mock theta functions in Ramanujan’s Lost Notebook (II)*, Adv. Math.**156**(2000), 180–285. - Y.-S. Choi,
*Two identities for tenth order mock theta functions in Ramanujan’s Lost Notebook*, submitted for publication. - George Gasper and Mizan Rahman,
*Basic hypergeometric series*, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR**1052153** - Dean Hickerson,
*A proof of the mock theta conjectures*, Invent. Math.**94**(1988), no. 3, 639–660. MR**969247**, DOI 10.1007/BF01394279 - Dean Hickerson,
*A proof of the mock theta conjectures*, Invent. Math.**94**(1988), no. 3, 639–660. MR**969247**, DOI 10.1007/BF01394279 - Julian Bonder,
*Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen*, Z. Angew. Math. Mech.**19**(1939), 251–252 (German). MR**42**, DOI 10.1002/zamm.19390190409 - L. J. Mordell,
*The value of the definite integral*, Quarterly Journal of Mathematics**48**(1920), 329–342. - Srinivasa Ramanujan,
*The lost notebook and other unpublished papers*, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR**947735** - Robert A. Rankin,
*Modular forms and functions*, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR**0498390** - Sinai Robins,
*Generalized Dedekind $\eta$-products*, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 119–128. MR**1284055**, DOI 10.1090/conm/166/01645 - G. N. Watson,
*The final problem:An account of the mock theta functions*, J. London Math. Soc.**11**(1936), 55–80.

## Bibliographic Information

**Youn-Seo Choi**- Affiliation: Department of Mathematics, Korea University, 5-1, Anam-dong, Sungbuk-ku, Seoul, 136-701, Korea
- Email: y-choi2@mail.korea.ac.kr
- Received by editor(s): August 11, 2000
- Published electronically: September 21, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 705-733 - MSC (2000): Primary 11B65; Secondary 11F20, 33E05
- DOI: https://doi.org/10.1090/S0002-9947-01-02861-6
- MathSciNet review: 1862564