Small profinite structures
HTML articles powered by AMS MathViewer
- by Ludomir Newelski
- Trans. Amer. Math. Soc. 354 (2002), 925-943
- DOI: https://doi.org/10.1090/S0002-9947-01-02854-9
- Published electronically: October 24, 2001
- PDF | Request permission
Abstract:
We propose a model-theoretic framework for investigating profinite structures. We prove that in many cases small profinite structures interpret infinite groups. This corresponds to results of Hrushovski and Peterzil on interpreting groups in locally modular stable and o-minimal structures.References
- Steven Buechler, Essential stability theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1996. MR 1416106, DOI 10.1007/978-3-642-80177-8
- E. Bouscaren and E. Hrushovski, On one-based theories, J. Symbolic Logic 59 (1994), no. 2, 579–595. MR 1276634, DOI 10.2307/2275409
- Ehud Hrushovski, Locally modular regular types, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 132–164. MR 1033027, DOI 10.1007/BFb0082236
- Ludomir Newelski, Meager forking, Ann. Pure Appl. Logic 70 (1994), no. 2, 141–175. MR 1321462, DOI 10.1016/0168-0072(94)90028-0
- Ludomir Newelski, $\scr M$-gap conjecture and m-normal theories, Israel J. Math. 106 (1998), 285–311. MR 1656901, DOI 10.1007/BF02773473
- L.Newelski, Geometry of $*$-finite types, J.Symb.Logic 64(1999), 1375-1395.
- L.Newelski, m-normal theories, Fund.Math., accepted.
- Ludomir Newelski, Meager forking and $m$-independence, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 33–42. MR 1648054
- L.Newelski, Small profinite groups, J.Symb. Logic, accepted.
- Ya’acov Peterzil, Constructing a group-interval in o-minimal structures, J. Pure Appl. Algebra 94 (1994), no. 1, 85–100. MR 1277525, DOI 10.1016/0022-4049(94)90007-8
Bibliographic Information
- Ludomir Newelski
- Affiliation: Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland; Mathematical Institute of the Polish Academy of Sciences, Kopernika 18, 51-617 Wroclaw, Poland
- Email: newelski@math.uni.wroc.pl
- Received by editor(s): August 30, 1999
- Published electronically: October 24, 2001
- Additional Notes: Research supported by KBN grant 2 P03A 002 16
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 925-943
- MSC (2000): Primary 03C45, 03C99; Secondary 51D20
- DOI: https://doi.org/10.1090/S0002-9947-01-02854-9
- MathSciNet review: 1867365