A dimension inequality for Cohen-Macaulay rings
HTML articles powered by AMS MathViewer
- by Sean Sather-Wagstaff
- Trans. Amer. Math. Soc. 354 (2002), 993-1005
- DOI: https://doi.org/10.1090/S0002-9947-01-02870-7
- Published electronically: August 21, 2001
- PDF | Request permission
Abstract:
The recent work of Kurano and Roberts on Serre’s positivity conjecture suggests the following dimension inequality: for prime ideals $\mathfrak {p}$ and $\mathfrak {q}$ in a local, Cohen-Macaulay ring $(A,\mathfrak {n})$ such that $e(A_{\mathfrak {p}})=e(A)$ we have $\dim (A/\mathfrak {p})+\dim (A/\mathfrak {q})\leq \dim (A)$. We establish this dimension inequality for excellent, local, Cohen-Macaulay rings which contain a field, for certain low-dimensional cases and when $R/\mathfrak {p}$ is regular.References
- Pierre Berthelot, Altérations de variétés algébriques (d’après A. J. de Jong), Astérisque 241 (1997), Exp. No. 815, 5, 273–311 (French, with French summary). Séminaire Bourbaki, Vol. 1995/96. MR 1472543
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
- Henri Gillet and Christophe Soulé, $K$-théorie et nullité des multiplicités d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 3, 71–74 (French, with English summary). MR 777736
- M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag, Berlin, 1988. An algebraic study; With an appendix by B. Moonen. MR 954831, DOI 10.1007/978-3-642-61349-4
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- M. Hochster, Nonnegativity of intersection multiplicities in ramified regular local rings following Gabber/De Jong/Berthelot, unpublished notes.
- Kazuhiko Kurano and Paul C. Roberts, The positivity of intersection multiplicities and symbolic powers of prime ideals, Compositio Math. 122 (2000), no. 2, 165–182. MR 1775417, DOI 10.1023/A:1001741230307
- Christer Lech, Inequalities related to certain couples of local rings, Acta Math. 112 (1964), 69–89. MR 161876, DOI 10.1007/BF02391765
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- Paul Roberts, The vanishing of intersection multiplicities of perfect complexes, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 127–130. MR 799793, DOI 10.1090/S0273-0979-1985-15394-7
- Paul C. Roberts, Recent developments on Serre’s multiplicity conjectures: Gabber’s proof of the nonnegativity conjecture, Enseign. Math. (2) 44 (1998), no. 3-4, 305–324. MR 1659224
- Jean-Pierre Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel; Seconde édition, 1965. MR 0201468
Bibliographic Information
- Sean Sather-Wagstaff
- Affiliation: Department of Mathematics, University of Utah, 155 S. 1400 E., Salt Lake City, Utah 84112-0090
- Address at time of publication: Department of Mathematics, University of Illinois, 273 Altgeld Hall, 1409 W. Green St., Urbana, Illinois 61801
- Email: ssather@math.uiuc.edu
- Received by editor(s): December 20, 1999
- Received by editor(s) in revised form: March 1, 2000
- Published electronically: August 21, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 993-1005
- MSC (2000): Primary 13H15, 13C15; Secondary 13H05, 13D22
- DOI: https://doi.org/10.1090/S0002-9947-01-02870-7
- MathSciNet review: 1867369