COLORING \mathbb{R}^n

JAMES H. SCHMERL

Abstract. If $1 \leq m \leq n$ and $A \subseteq \mathbb{R}$, then define the graph $G(A, m, n)$ to be the graph whose vertex set is \mathbb{R}^n with two vertices $x, y \in \mathbb{R}^n$ being adjacent iff there are distinct $u, v \in A^m$ such that $\|x - y\| = \|u - v\|$. For various m and n and various A, typically $A = \mathbb{Q}$ or $A = \mathbb{Z}$, the graph $G(A, m, n)$ can be properly colored with ω colors. It is shown that in some cases a coloring $\varphi : \mathbb{R}^n \to \omega$ can also have the additional property that if $\alpha : \mathbb{R}^m \to \mathbb{R}^n$ is an isometric embedding, then the restriction of φ to $\alpha(A^m)$ is a bijection onto ω.

Erdős [1] proved that there is a function $\varphi : \mathbb{R}^2 \to \omega$ such that whenever $x, y \in \mathbb{R}^2$ are distinct and the distance between them is rational (that is, $\|x - y\| \in \mathbb{Q}$), then $\varphi(x) \neq \varphi(y)$. There have been various generalizations of this result, including extensions to higher dimensions — to \mathbb{R}^3 by Erdős & Komjáth [2] and then to arbitrary \mathbb{R}^n by Komjáth [3]. Another proof of Komjáth’s theorem, as well as proofs of some other similar theorems, can be found in [7]. In another direction, there is the recent improvement by Komjáth [4] who showed that the function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ could, in addition, be required to satisfy the following interesting condition: if $\ell \subseteq \mathbb{R}^2$ is a line and $a \in \ell$, then φ maps $\{x \in \ell : \|x - a\| \in \mathbb{Q}\}$ onto ω. In this paper, Komjáth’s improvement is extended to arbitrary \mathbb{R}^n.

Theorem 1. There is a function $\varphi : \mathbb{R}^n \to \omega$ such that for any line $\ell \subseteq \mathbb{R}^n$ and $a \in \ell$, the restriction of φ to $\{x \in \ell : \|x - a\| \in \mathbb{Q}\}$ is a bijection onto ω.

Komjáth [4] proved some similar types of theorems related to sets having the Steinhaus property. A subset $B \subseteq \mathbb{R}^2$ is said to have the Steinhaus property if, for any isometry $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$, there is exactly one lattice point in $\alpha(B)$ or, in other words, $|\alpha(B) \cap \mathbb{Z}^2| = 1$. In a very recent preprint, Jackson & Mauldin [5] settle a long-standing open problem by proving the existence of a set having the Steinhaus property. Earlier, Komjáth [4] had proved that there is a subset $B \subseteq \mathbb{R}^2$ such that for any isometry $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$, there is exactly one point in $\alpha(B) \cap \mathbb{Q}^2$. We improve the Komjáth result by showing that \mathbb{R}^2 can be partitioned into countably many sets each having this property. Moreover, we will prove the following n-dimensional extension of the Komjáth result.

Theorem 2. There is a function $\varphi : \mathbb{R}^n \to \omega$ such that for any isometry $\alpha : \mathbb{R}^n \to \mathbb{R}^n$, the restriction of φ to $\alpha(\mathbb{Q}^n)$ is a bijection onto ω.

Notice that Theorem 1 can be rephrased in a manner similar to the way that Theorem 2 is phrased. We will often consider isometric embeddings $\alpha : \mathbb{R}^m \to \mathbb{R}^n$, ...
but we will refer to them as isometries, even when \(m < n \). Thus, the image of an
isometry \(\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is just an \(m \)-dimensional hyperplane. Theorem 1 asserts
that there is a function \(\varphi : \mathbb{R}^n \rightarrow \omega \) such that for any isometry \(\alpha : \mathbb{R} \rightarrow \mathbb{R}^n \),
the restriction of \(\varphi \) to \(\alpha(\mathbb{Q}) \) is a bijection onto \(\omega \). Both Theorems 1 and 2 are
consequences of the more general Theorem 3.

Suppose \(1 \leq m \leq n \) and \(A \subseteq \mathbb{R} \). Then we define \(G(A, m, n) \) to be the graph
having vertex set \(\mathbb{R}^n \) in which two distinct vertices \(x, y \) are adjacent iff \(\{x, y\} \subseteq \alpha(A^m) \) for some isometry \(\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n \). We will sometimes refer to the elements
of \(\omega \) as colors. A function \(\varphi : D \rightarrow \omega \), where \(D \subseteq \mathbb{R}^n \), will be referred to as a
coloring, and it is proper if \(\varphi(x) \neq \varphi(y) \) whenever \(x, y \in D \) are adjacent. The
graph associated with Theorem 1 is \(G(\mathbb{Q}, 1, n) \). Komjáth’s theorem in [3] asserts
that this graph has chromatic number \(\aleph_0 \).

Whenever we have \(1 \leq m \leq n \) and \(A \subseteq \mathbb{R} \), it will be understood that any
reference to a graph is to the graph \(G(A, m, n) \).

Theorem 3. Let \(1 \leq m \leq n \) and \(A \subseteq \mathbb{R} \) be such that the following two conditions hold:

1. \(A \) is a countable subring of \(\mathbb{R} \) and \(1 \in A \);
2. for any finite \(F \subseteq \mathbb{R}^n \) and isometry \(\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n \), there is \(z \in \alpha(A^m) \setminus F \)
 which is not adjacent to any \(y \in F \setminus \alpha(A^m) \).

Then there is a coloring \(\varphi : \mathbb{R}^n \rightarrow \omega \) such that for any isometry \(\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n \),
the restriction of \(\varphi \) to \(\alpha(A^m) \) is a bijection onto \(\omega \).

The proof of Theorem 3 will be presented in §1. In §2 we show how Theorem 3
implies Theorems 1 and 2. Another consequence of Theorem 3 is also given in that
section. Finally, we make a connection with sets having the Steinhaus property,
which concerns the graph \(G(\mathbb{Z}, 2, 2) \).

1. The Proof of Theorem 3

In this section we give a proof of Theorem 3. The proof will rely heavily on the
proof of Komjáth’s theorem that the chromatic number of \(\mathbb{R}^n \) is \(\aleph_0 \) as given in [7].
We present a summary of that proof in a form suitable for our needs here.

We will think of \(\mathbb{R} \) as an ordered field. Since \(A \) is countable, we can find a
countable real-closed field \(\mathbb{F} \subseteq \mathbb{R} \) such that \(A \subseteq \mathbb{F} \). We will take \(\mathbb{F} \) to be fixed for the
remainder of this proof. Notice that if \(x, y \) are adjacent, then \(\|x - y\| \in \mathbb{F} \). If
\(X \subseteq \mathbb{R} \) and \(R \subseteq \mathbb{R}^k \) for some \(k < \omega \), then we say that \(R \) is \(X \)-definable if it is
definable in the ordered field \(\mathbb{R} \) by a formula in which parameters from \(X \cup \mathbb{F} \)
are allowed. We say that \(a \in \mathbb{R}^k \) is \(X \)-definable if \(\{a\} \) is \(X \)-definable.

Let \(T \) be a transcendence basis for \(\mathbb{R} \) over \(\mathbb{F} \) which is to be fixed for the remainder
of this proof. (Note that the existence of \(T \) cannot be proved without some use of
the Axiom of Choice.) Then each \(a \in \mathbb{R}^n \) is \(T \)-definable. In fact there is a unique
smallest finite subset \(S \subseteq T \) such that \(a \) is \(S \)-definable; we will refer to this set as
the support of \(a \), and denote it by \(supp(a) \). When it is convenient, we will consider
\(supp(a) \) to be an ordered set: thus, if \(supp(a) = \{t_0, t_1, t_2, \ldots, t_s-1\} \), where \(t_0 < t_1 < \cdots < t_{s-1} \), then we will sometimes let \(supp(a) = \{t_0, t_1, t_2, \ldots, t_{s-1}\} \).
For any subset \(X \subseteq \mathbb{R}^n \), let \(supp(X) = \bigcup \{supp(a) : a \in X\} \). Let \(b_0 = (0, 0, \ldots, 0) \in \mathbb{R}^m \),
and for \(1 \leq j \leq m \) let \(b_j = (0, 0, \ldots, 1, 0, \ldots, 0) \in \mathbb{R}^m \), which has its unique
1 preceded by \(j - 1 \) 0’s. It follows from (1) that whenever \(\alpha, \beta : \mathbb{R}^m \rightarrow \mathbb{R}^n \) are
isometries \(\{\alpha(b_0), \alpha(b_1), \ldots, \alpha(b_m)\} \subseteq \beta(A^m) \), then \(\alpha(A^m) = \beta(A^m) \). Thus, for
each isometry $\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$, each element of $\alpha(A^m)$ is \{ $\alpha(b_0), \alpha(b_1), \ldots, \alpha(b_m)$ \}-definable and therefore, $\text{supp}(\alpha(A))$ is finite. In fact, $\text{supp}(\alpha(A^m)) = \text{supp}(\alpha(b_0)) \cup \text{supp}(\alpha(b_1)) \cup \cdots \cup \text{supp}(\alpha(b_m))$.

For $s < \omega$, a subset $B \subseteq \mathbb{R}^n$ is a \textbf{special s-box} if there are rationals $p_0 < q_0 < p_1 < q_1 < \cdots < q_{s-1} < q_s = 1$ such that $B = (p_0, q_0) \times (p_1, q_1) \times \cdots \times (p_{s-1}, q_{s-1})$. Each of the intervals (p_i, q_i) is a \textbf{factor} of B. Let $(f_r : r < \omega)$ be a list of all \emptyset-definable analytic functions $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$, where B is a special s-box for some $s < \omega$, and let B_r be the domain of f_r.

The following lemma, which is Lemma 7 of \cite{7}, is a key fact which is used repeatedly.

Lemma 1.1. Suppose that B is a special s-box and $g : B \rightarrow \mathbb{R}$ is a \emptyset-definable analytic function such that $g(\bar{t}) = 0$ for some $\bar{t} \in B \cap T^n$. Then $g(\bar{x}) = 0$ for every $\bar{x} \in B$.

Associate with each $x \in \mathbb{R}^n$ the set $\Psi(x)$ of colors, where $r \in \Psi(x)$ iff $\text{supp}(x) = \langle t_0, t_1, \ldots, t_{s-1} \rangle$ and $x = f_r(t_0, t_1, \ldots, t_{s-1})$. The crucial facts about the sets $\Psi(x)$ are contained in the next two lemmas. The first follows from the Implicit Function Theorem and the Tarski-Seidenberg Theorem on the elimination of quantifiers in \mathbb{R}. The second can be deduced from Lemma 1.1.

Lemma 1.2. If $x \in \mathbb{R}^n$, then $\Psi(x) \neq \emptyset$. \hfill \Box

Lemma 1.3. If $x, y \in \mathbb{R}^n$ are adjacent in $G(A, m, n)$ (or even if $0 < \|x - y\| \in \mathbb{F}$), then $\Psi(x) \cap \Psi(y) = \emptyset$. \hfill \Box

By Lemma 1.2, there is a coloring $\psi : \mathbb{R}^n \rightarrow \omega$ such that $\psi(x) \in \Psi(x)$ for each $x \in \mathbb{R}^n$, and from Lemma 1.3 we get that any such ψ is proper.

The coloring φ will be constructed inductively; that is, we will construct an increasing sequence $\langle \varphi_k : k < \omega \rangle$ of functions, and then let φ be its union. This sequence of functions will be defined from two sequences d_0, d_1, d_2, \ldots and e_0, e_1, e_2, \ldots of colors. For each $k < \omega$, we let

$$D_k = \{ x \in \mathbb{R}^n : \Psi(x) \cap \{d_0, d_1, \ldots, d_{k-1}\} \neq \emptyset \},$$

and then let $\varphi_k : D_k \rightarrow \omega$ be such that if $x \in D_k$ then $\varphi_k(x) = e_m$, where $m < k$ is the least for which $d_m \in \Psi(x)$. Whenever we have $d_0, d_1, \ldots, d_{k-1}$, we will assume that D_k has been defined in this way; and if, in addition, we have $e_0, e_1, \ldots, e_{k-1}$, then we also assume that φ_k has been defined. Of course, for each k we must have that φ_k is a proper coloring of D_k; we will say that the finite sequence $d_0, d_1, \ldots, d_{k-1}, e_0, e_1, e_2, \ldots, e_{k-1}$ is \textbf{acceptable} if φ_k is a proper coloring.

At the beginning of stage k, we have $d_0, d_1, \ldots, d_{k-1}$ and $e_0, e_1, \ldots, e_{k-1}$, and thus also D_k and φ_k. Then, at stage k, we will obtain d_k, e_k, D_{k+1} and φ_{k+1}. There are two requirements which must be taken care of in this construction: the domain of φ should be \mathbb{R}^n; and for each isometry $\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n$ and color r, there should be some $z \in \alpha(A^m)$ such that $\varphi(z) = r$. The first of these requirements is easily handled by the following lemma.

Lemma 1.4. If $d_0, d_1, \ldots, d_{k-1}, e_0, e_1, \ldots, e_{k-1}$ is acceptable and if d_k is any color, then there is a color e_k such that $d_0, d_1, \ldots, d_{k-1}, d_k, e_0, e_1, \ldots, e_{k-1}, e_k$ is acceptable.

\textbf{Proof.} By Lemma 1.3, we can choose any $e_k \notin \{e_0, e_1, \ldots, e_{k-1}\}$. \hfill \Box
We now turn to taking care of the second requirement.

Lemma 1.5. Suppose that $d_0, d_1, \ldots, d_{k-1}$ are colors and that $\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n$ is an isometry. Then there is $z \in \alpha(A^m) \setminus D_k$ such that z is not adjacent to any $y \in D_k \setminus \alpha(A^m)$ and $\text{supp}(z) = \text{supp}(\alpha(A^m))$.

Proof. We begin this proof by showing that condition (2) of Theorem 3 can be improved to the following:

(2') for any finite $F \subseteq \mathbb{R}^n$ and isometry $\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n$, there is $z \in \alpha(A^m) \setminus F$ which is not adjacent to any $y \in F \setminus \alpha(A^m)$ and is such that $\text{supp}(z) = \text{supp}(\alpha(A^m))$.

For each \mathbf{T}, which is properly contained in $\text{supp}(\alpha(A^m))$, the set of elements in $\alpha(A^m)$ having support contained in \mathbf{T} lie in some $(m-1)$-dimensional hyperplane of \mathbb{R}^n. (Otherwise, we would have that $\text{supp}(\alpha(A^m)) \subseteq \mathbf{T}$.) Therefore, $\{a \in A^m : \text{supp}(\alpha(a)) \subseteq \mathbf{T}\}$ is contained in an $(m-1)$-dimensional hyperplane of \mathbb{R}^n. Thus, the set S of elements in $a \in A^m$ for which $\text{supp}(\alpha(a))$ is different from $\text{supp}(\alpha(A^m))$ is contained in the union of finitely many $(m-1)$-dimensional hyperplanes. Clearly, there are finitely many $v_0, v_1, \ldots, v_p \in A^m$ such that $A^m \subseteq (v_0 + (A^m \setminus S)) \cup (v_1 + (A^m \setminus S)) \cup \cdots \cup (v_p + (A^m \setminus S))$. Let $\beta : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be the isometry defined by $\beta(x) = x + (\alpha(v_i) - \alpha(0))$. Then $\beta(\alpha(A^m)) = \alpha(A^m)$ for each $i \leq p$, and $\text{supp}(\alpha(A^m)) \subseteq \beta_0(\alpha(A^m \setminus S)) \cup \beta_1(\alpha(A^m \setminus S)) \cup \cdots \cup \beta_p(\alpha(A^m \setminus S))$. By (2) we let $x \in \alpha(A^m) \setminus (\beta_0(F) \cup \beta_1(F) \cup \cdots \cup \beta_p(F))$ be such that it is not adjacent to any $y \in (\beta_0(F) \cup \beta_1(F) \cup \cdots \cup \beta_p(F)) \setminus \alpha(A^m)$. There is $i \leq p$ such that $x \in \beta_i(\alpha(A^m \setminus S))$. Then $x \notin \beta_i(F)$ and x is not adjacent to any point in $\beta_i(F) \setminus \alpha(A^m)$. Therefore, $z = \beta_i^{-1}(x)$ is as required.

We now return to the proof of the lemma. Consider an equivalence relation on $D_k \setminus \alpha(A^m)$ obtained in the following way. The points $y, y' \in D_k \setminus \alpha(A^m)$ are equivalent if $\Phi(y) \cap \{d_0, d_1, \ldots, d_{k-1}\} = \Phi(y') \cap \{d_0, d_1, \ldots, d_{k-1}\}$ and their supports are equivalent over $\text{supp}(\alpha(A^m))$ in the following sense: if $\text{supp}(y) = \{t_0, t_1, \ldots, t_s-1\}$, $\text{supp}(y') = \{t_0', t_1', \ldots, t_{s'}-1\}$, $u \in \text{supp}(\alpha(A^m))$ and $j < s$, then $t_j < u$ iff $t_j' < u$ and $u < t_j$ iff $u < t_j'$. Clearly, there are only finitely many equivalence classes.

We show that if y and y' are equivalent and $x \in \alpha(A^m)$, then y is adjacent to x iff y' is adjacent to x; in fact, we will show that if y is adjacent to x, then $\|y - x\| = \|y' - x\|$. So, suppose that y and y' are equivalent and y is adjacent to $x \in \alpha(A^m)$. Then let \mathbf{T}, \mathbf{T}' be their supports, so that $y = f_\mathbf{T}(\mathbf{T})$ and $y' = f_\mathbf{T}'(\mathbf{T}')$. Let B be a special box for which $\text{supp}(y) \subseteq \text{supp}(\alpha(A^m)), \text{supp}(y') \subseteq \text{supp}(\alpha(A^m)) \in B$ and on which there is a \emptyset-definable analytic function g for which $g(\text{supp}(y), \text{supp}(\alpha(A^m))) = \|y - x\|^2$ and $g(\text{supp}(y'), \text{supp}(\alpha(A^m))) = \|y' - x\|^2$. Since this $\|y - x\|^2 \in \mathbb{F}$, it follows from Lemma 1.1 that g is constant on B, so that $\|y - x\| = \|y' - x\|$.

Now let $Y \subseteq D_k \setminus \alpha(A^m)$ be a finite set which meets every equivalence class. Then, by (2'), we can choose $z \in \alpha(A^m) \setminus D_k$ such that $\text{supp}(z) = \text{supp}(\alpha(A^m))$ and z is not adjacent to any $y \in Y$. Then z is not adjacent to any $y \in D_k \setminus \alpha(A^m)$, thereby proving the lemma.

We say that an isometry $\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n$ has **type** $\tau = \langle i_0, i_1, \ldots, i_m \rangle$ if the following hold for each $j \leq m$:

- $i_j \in \Psi(\alpha(b_j));$
- $B_{i_j} = B_{b_j}$ for each $j \leq m$;
- $f_{i_j}(\text{supp}(\alpha(A^m))) = \alpha(b_j)$.

\[\text{License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use} \]
We will call the box B_0 the domain of τ. It is possible for an isometry not to have a type, and it is also possible that an isometry have more than one type.

Lemma 1.6. For every isometry $\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n$ there is an isometry $\gamma : \mathbb{R}^m \rightarrow \mathbb{R}^n$ such that $\gamma(A^m) = \alpha(A^m)$ and γ has a type.

Proof. Using an argument like the one at the beginning of the proof of Lemma 1.5, we see that there is a point $v \in A^m$ such that $\text{supp}(\alpha(v + b_0)) = \text{supp}(\alpha(v + b_1)) = \cdots = \text{supp}(\alpha(v + b_m))$. Let $\gamma : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be such that $\gamma(x) = \alpha(v + x)$.

If $C_0, C_1, \ldots, C_{k-1}, B$ are special boxes, then we say that B is **refining** over $C_0, C_1, \ldots, C_{k-1}$ if, whenever J is a factor of some C_j and I is a factor of B, then either $J \cap I = \emptyset$ or $J \supseteq I$.

Lemma 1.7. Let τ be the type of an isometry, and let $C_0, C_1, \ldots, C_{k-1}$ be special boxes. Then there are types $\tau_0, \tau_1, \ldots, \tau_p$ with domains $C_k, C_{k+1}, \ldots, C_{k+p}$ respectively such that the following hold:
- for $j \leq p$, C_{k+j} is refining over $C_0, C_1, \ldots, C_{k+j-1}$;
- for any isometry α of type τ, there is some $j \leq p$ such that α has a type τ_j.

Proof. Let $\tau = \langle i_0, i_1, \ldots, i_m \rangle$ and let B be the domain of τ. Let Q be the finite set of rationals which are the endpoints of the factors of the special boxes $C_0, C_1, \ldots, C_{k-1}$ and B. Let \mathcal{B} be the finite set of all special boxes whose factors have endpoints in Q. Then let $C_k, C_{k+1}, \ldots, C_{k+p}$ be those special boxes which are minimal (with respect to inclusion) in \mathcal{B} and which are included in B. For each $j \leq p$, let $\tau_j = \langle i_{0j}, i_{1j}, \ldots, i_{mj} \rangle$, where each i_{rj} is such that $f_{i_{rj}} = f_{i_r}|_{C_{k+j}}$. It is clear that the conditions in the lemma are met.

Lemma 1.8. Suppose that $d_0, d_1, \ldots, d_{k-1}, e_0, e_1, \ldots, e_{k-1}$ is acceptable and e_k is a color. Suppose that α is an isometry of type $\tau = \langle i_0, i_1, \ldots, i_m \rangle$ such that $\varphi_k(z) \neq e_k$ for all $z \in \alpha(A^m)$. Suppose that B, the domain of τ, is refining over $B_{d_0}, B_{d_1}, \ldots, B_{d_{k-1}}$. Then there is a color d_k such that $B_{d_k} = B$, $d_0, d_1, \ldots, d_{k-1}, d_k, e_0, e_1, \ldots, e_{k-1}, e_k$ is acceptable, and for any isometry $\beta : \mathbb{R}^m \rightarrow \mathbb{R}^n$ of type τ, there is $w \in \beta(A^m)$ such that $\varphi_{k+1}(w) = e_k$.

Proof. By Lemma 1.5, let $z \in \alpha(A^m) \setminus D_k$ be such that $\text{supp}(z) = \text{supp}(\alpha(A^m))$ and z is not adjacent to any $y \in D_k \setminus \alpha(A^m)$. Let $\text{supp}(\alpha(A^m)) = \mathbf{7}$ and let $a = \alpha^{-1}(z)$. Then $a = (a_1, a_2, \ldots, a_m) \in \mathbb{R}^m$. Let $a_0 = 1 - (a_1 + a_2 + \cdots + a_m)$. We now let d_k be such that $f_{d_k} : B \rightarrow \mathbb{R}^n$ is the analytic function defined by

$$f_{d_k}(\mathbf{x}) = a_0 f_{i_0}(\mathbf{x}) + a_1 f_{i_1}(\mathbf{x}) + \cdots + a_m f_{i_m}(\mathbf{x}).$$

Then $B_{d_k} = B$. Note that $f_{d_k}(\mathbf{7}) = z$ since

$$f_{d_k}(\mathbf{7}) = a_0 f_{i_0}(\mathbf{7}) + a_1 f_{i_1}(\mathbf{7}) + \cdots + a_m f_{i_m}(\mathbf{7}) = a_0 \alpha(b_0) + a_1 \alpha(b_1) + \cdots + a_m \alpha(b_m) = \alpha(a_0 b_0 + a_1 b_1 + \cdots + a_m b_m) = \alpha(a) = z.$$

It is clear that $\varphi_{k+1}(z) = e_k$. We will show that for every isometry β having type τ there is $w \in \beta(A^m)$ for which $\varphi_{k+1}(w) = e_k$. Consider β having type τ, and let $\mathbf{7} = \text{supp}(\beta(A^m))$. Then let $w = \beta(a) = f_{d_k}(\mathbf{7})$.

Clearly, $w \in \beta(A^m)$. To show that $\varphi_{k+1}(w) = e_k$, it suffices to show that $w \in D_{k+1} \setminus D_k$.
We show that $w \in D_{k+1}$ by showing that $d_k \in \Psi(w)$. Since $w = f_{d_k}(\mathfrak{S})$, we need only show that $\text{supp}(w) = \mathfrak{S}$. If not, then there is color p such that $f_p(\mathfrak{S}) = w$ and \mathfrak{S} is properly contained in \mathfrak{S}. Without loss of generality, we can assume that s_0 is the unique real in \mathfrak{S} but not in \mathfrak{S}. Thus, we can let $w = f_p(\mathfrak{S}) = f_{d_k}(\mathfrak{S}, s_0)$. Since s_0 is not \mathfrak{S}-definable, it follows that for some open neighborhood U of s_0, if $s \in U$, then $f_p(\mathfrak{S}) = f_{d_k}(\mathfrak{S}, s)$. Let $r \in U$ be a rational, and then $f_{d_k}(\mathfrak{S}, s_0) = f_{d_k}(\mathfrak{S}, r)$. It then easily follows from Lemma 1.3 that $\text{supp}(z) \neq \mathfrak{S}$, which is a contradiction.

Next, we must show that $w \notin D_k$. For a contradiction, suppose that $m < k$ and $d_m \notin \Psi(w)$. Thus $w = f_{d_m}(\mathfrak{S})$. Since B_{d_k} is refining, $B_{d_k} \subseteq B_{d_m}$, so it follows from Lemma 1.1 that f_{d_m} and f_{d_k} agree on B_{d_k}. Therefore, $z = f_{d_m}(\mathfrak{S})$, contradicting that $z \notin D_k$.

It remains to prove that φ_{k+1} is a proper coloring. Clearly, there is no $w \in D_{k+1}$ adjacent to z such that $\varphi_{k+1}(w) = \varphi_{k+1}(z)$. Consider arbitrary $z' \in D_{k+1} \setminus D_k$ and some $w' \in D_{k+1}$ adjacent to it, with the intent of showing that $\varphi_{k+1}(w') \neq \varphi_{k+1}(z')$. Then $z' = f_{d_k}(\mathfrak{S})$ for some \mathfrak{S}. Let $m' \leq k$ be minimal such that $w' = f_{d_m}(\mathfrak{S})$. Since B_{d_k} is refining, we can find a special box C such that $(\mathfrak{S}, \mathfrak{S}'), (\mathfrak{S}, \mathfrak{S}) \in C$ and then let $g : C \rightarrow \mathbb{R}$ be the θ-definable analytic function such that $g(\mathfrak{S}, \mathfrak{S}'') = \|f_{d_k}(\mathfrak{S}) - f_{d_m}(\mathfrak{S})\|^2$. Then $g(\mathfrak{S}, \mathfrak{S}') = \|z' - w'\|^2 \leq \mathfrak{S}$, so it follows from Lemma 1.1 that g is constant. We can find $\mathfrak{S'}$ such that $(\mathfrak{S'}, \mathfrak{S'}) \in C$. Then $g(\mathfrak{S}, \mathfrak{S'}) = \|z' - w'\|^2 \leq \mathfrak{S}$. Let $v = f_{m'}(\mathfrak{S})$. Then $v \in D_{k+1}$, and v and z are adjacent. Therefore, $\varphi_{k+1}(v) \neq \varphi_{k+1}(z)$, so to complete the proof it suffices to show that $\varphi_{k+1}(w') = \varphi_{k+1}(v)$.

Suppose $\varphi_{k+1}(w') \neq \varphi_{k+1}(v)$. Then there is $m < m'$ such that $d_m \in \Psi(v)$, so that $f_m(\mathfrak{S}) = f_{m'}(\mathfrak{S})$. It follows from Lemma 1.1, that $f_m(\mathfrak{S'}) = f_{m'}(\mathfrak{S'}) = w'$, which contradicts the minimality of m'.

We finish off the proof of Theorem 3. We are constructing the two sequences d_0, d_1, d_2, \ldots and e_0, e_1, e_2, \ldots. At each stage k we have the first k terms of each sequence, and $d_0, d_1, \ldots, d_{k-1}, e_0, e_1, \ldots, e_{k-1}$ is acceptable. There are the two requirements mentioned just before Lemma 1.4.

For the first of these, by Lemma 1.2, it suffices that $\omega = \{d_0, d_1, d_2, \ldots\}$. So at some stage k we are concerned that d gets into this sequence. By Lemma 1.4, we can let $d_k = d$ and then get e_k such that $d_0, d_1, \ldots, d_{k-1}, d_k, e_0, e_1, \ldots, e_{k-1}, e_k$ is acceptable.

To meet the second requirement, it suffices by Lemma 1.6 to show that for every type τ and color r, if α has type τ, then there is $z \in \alpha(A^m)$ such that $\varphi(z) = r$. So at some stage k we will consider τ and r. Let $C_0, C_1, \ldots, C_{k-1}$ be the special boxes $B_{d_0}, B_{d_1}, \ldots, B_{d_{k-1}}$. Apply Lemma 1.7 to get types $\tau_0, \tau_1, \ldots, \tau_p$ with domains $C_k, C_{k+1}, \ldots, C_{k+p}$. Now apply Lemma 1.8 $p + 1$ times, at the jth time using τ_j, to get acceptable $d_0, d_1, \ldots, d_{k+p}, e_0, e_1, \ldots, e_{k+p}$. Clearly, the second requirement will be met, completing the proof of Theorem 3.

2. The Consequences

To derive Theorem 1 from Theorem 3, it suffices to show that when $A = \mathbb{Q}$ conditions (1) and (2) of Theorem 3 hold. Condition (1) is obvious. Condition (2) follows from the following lemma which is from Komjáth [6]. The proof presented here is a little different from the one in [6].

Lemma 2.1. Let $F \subseteq \mathbb{R}^n$ be a finite set of points and $\alpha : \mathbb{R} \rightarrow \mathbb{R}^n$ be an isometry. Then there is $x \in \alpha(\mathbb{Q}) \setminus F$ such that $\|x - y\| \notin \mathbb{Q}$ for all $y \in F \setminus \alpha(\mathbb{Q})$.

Proof. Without loss of generality we can assume that $n = 2$ and α is such that $\alpha(x) = (x, 0)$ for all $x \in \mathbb{R}$. If $(a, b) \in F$ and for two distinct rationals q and r, both $\|(a, b) - (q, 0)\|$ and $\|(a, b) - (r, 0)\|$ are rational, then $a, b^2 \in \mathbb{Q}$. Thus, by appropriate scaling and translating, we can assume that if $(a, b) \in F$ and $\|(a, b) - (q, 0)\|$ is rational, where $0 < q \in \mathbb{Q}$, then a and b^2 are integers. Let c be a positive integer such that $c > a + b^2$ whenever $(a, b) \in F$ and let $x = (c, 0)$. To see that x is as required, let $y = (a, b) \in F \setminus \alpha(\mathbb{Q})$. Then $b \neq 0$ and $d^2 = (c - a)^2 + b^2 = \|x - y\|^2$ is an integer, so if d is rational, it also must be an integer. But $c - a < d < c - a + 1$, so d is not an integer.

To derive Theorem 2 from Theorem 3, it suffices to show that (1) and (2) hold when $A = \mathbb{Q}$. Again, (1) is trivial. The following lemma shows that (2) holds.

Lemma 2.2. Let $F \subseteq \mathbb{R}^n$ be a finite set of points. Then there is $x \in \mathbb{Q}^n \setminus F$ such that $\|x - y\|^2 \not\in \mathbb{Q}$ for all $y \in F \setminus \mathbb{Q}^n$.

Proof. Let $m = \|F\|$. Let $B \subseteq \mathbb{Q}$ be such that $|B| = m + 1$ and $B^n \cap F = \emptyset$. Consider some $y = (y_0, y_1, \ldots, y_{n-1}) \in F \setminus \mathbb{Q}^n$. Then there is $j < n$ such that $y_j \notin \mathbb{Q}$. Hence, if $u, v \in \mathbb{Q}^n$ agree except at the j-th coordinate, then not both $\|u - y\|^2 \in \mathbb{Q}$ and $\|v - y\|^2 \in \mathbb{Q}$. Therefore, for every $y \in F \setminus \mathbb{Q}^n$, there are at most $(m + 1)^{n-1}$ points $u \in B^n$ such that $\|u - y\|^2 \in \mathbb{Q}$. It follows that there are at most $m(m + 1)^{n-1} \leq |B^n|$ points $u \in B^n$ such that $\|u - y\|^2 \in \mathbb{Q}$ for some $y \in F \setminus \mathbb{Q}^n$. Therefore, there is $x \in B$ such that $\|x - y\|^2 \not\in \mathbb{Q}$ for every $y \in F \setminus \mathbb{Q}^n$.

The preceding lemma remains true if \mathbb{Q} is replaced by any countable subfield $F \subseteq \mathbb{R}$. Thus, we get the following corollary extending Theorem 2.

Corollary 2.3. Let $F \subseteq \mathbb{R}$ be any countable subfield. Then there is a coloring $\varphi : \mathbb{R}^n \rightarrow \omega$ such that for any isometry $\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$, the restriction of φ to $\alpha(\mathbb{R}^n)$ is a bijection onto ω.

Komjáth [H] proved that there is a subset $B \subseteq \mathbb{R}^2$ such that whenever $\alpha : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is an isometry, then $\alpha(B) \cap \mathbb{Z} = 1$. In fact, we can partition \mathbb{R}^2 into countably many such sets since Theorem 3 applies when $A = \mathbb{Z}$, $m = 1$ and $n = 2$. This can be extended to all n using the following lemma.

Lemma 2.4. Let $F \subseteq \mathbb{R}^n$ be a finite set of points and $\alpha : \mathbb{R} \rightarrow \mathbb{R}^n$ an isometry. Then there is $x \in \alpha(\mathbb{Z}) \setminus F$ such that $\|x - y\| \not\in \mathbb{Z}$ for all $y \in F \setminus \alpha(\mathbb{Z})$.

Proof. If there is $x \in \alpha(\mathbb{R}) \cap (F \setminus \alpha(\mathbb{Z}))$ then choose that point. Otherwise, let x be as in Lemma 2.1.

Corollary 2.5. There is a coloring $\varphi : \mathbb{R}^n \rightarrow \omega$ such that for any isometry $\alpha : \mathbb{R} \rightarrow \mathbb{R}^n$, the restriction of φ to $\alpha(\mathbb{Z})$ is a bijection onto ω.

The question of whether there is such a result for the graph $G(\mathbb{Z}, 2, 2)$ appears to be open. A positive answer would result in a partition of \mathbb{R}^2 into countably many sets each having the Steinhaus property. Theorem 3 cannot be used to get such a partition since the set $F = \{(\frac{k}{n}, k + \frac{1}{2}) : k = 0, 1, \ldots, 4\}$ is a counterexample to (2) (for $\alpha : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ being the identity isometry).

There is also the question concerning the graphs $G(\mathbb{Q}, m, n)$ when $2 \leq m < n$. For $m = 2, 3$, this question also appears to be open. However, if $4 \leq m < n$, then there is no such result since for any isometry $\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^n$, $\alpha(\mathbb{Q}^m)$ is not a maximal clique of $G(\mathbb{Q}, m, n)$ by Lagrange’s Theorem on sums of 4 squares.
REFERENCES

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009

E-mail address: schmerl@math.uconn.edu