Hamburger and Stieltjes moment problems in several variables
HTML articles powered by AMS MathViewer
- by F.-H. Vasilescu
- Trans. Amer. Math. Soc. 354 (2002), 1265-1278
- DOI: https://doi.org/10.1090/S0002-9947-01-02943-9
- Published electronically: November 2, 2001
- PDF | Request permission
Abstract:
In this paper we give solutions to the Hamburger and Stieltjes moment problems in several variables, in algebraic terms, via extended sequences. Some characterizations of the uniqueness of the solutions are also presented.References
- N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR 0184042
- Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984. Theory of positive definite and related functions. MR 747302, DOI 10.1007/978-1-4612-1128-0
- Christian Berg and Jens Peter Reus Christensen, Suites complètement définies positives, majoration de Schur et le problème des moments de Stieltjes en dimension $k$, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 1, 45–48 (French, with English summary). MR 719944
- Christian Berg and Marco Thill, Rotation invariant moment problems, Acta Math. 167 (1991), no. 3-4, 207–227. MR 1120603, DOI 10.1007/BF02392450
- V. F. Veselov, Regular factorizations of a characteristic function, and invariant subspaces of a nonselfadjoint operator, Differential equations. Spectral theory. Wave propagation (Russian), Probl. Mat. Fiz., vol. 13, Leningrad. Univ., Leningrad, 1991, pp. 87–107, 306 (Russian, with Russian summary). MR 1341632
- Raúl E. Curto and Lawrence A. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648, x+56. MR 1445490, DOI 10.1090/memo/0648
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- G. I. Èskin, A sufficient condition for the solvability of a multi-dimensional problem of moments, Soviet Math. Dokl. 1 (1960), 895–898. MR 0121660
- Bent Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), no. 1, 47–65. MR 693807
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- E. K. Haviland, On the momentum problem for distribution functions in more than one dimension. II, Amer. J. Math., 58 (1936), 164-168.
- A. G. Kostyučenko and B. S. Mityagin, The multi-dimensional problem of moments, Soviet Math. Dokl. 1 (1960), 415–419. MR 0121658
- Jan Stochel and Franciszek Hugon Szafraniec, The complex moment problem and subnormality: a polar decomposition approach, J. Funct. Anal. 159 (1998), no. 2, 432–491. MR 1658092, DOI 10.1006/jfan.1998.3284
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Konrad Schmüdgen, Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, vol. 37, Birkhäuser Verlag, Basel, 1990. MR 1056697, DOI 10.1007/978-3-0348-7469-4
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Jan Stochel and Franciszek Hugon Szafraniec, The complex moment problem and subnormality: a polar decomposition approach, J. Funct. Anal. 159 (1998), no. 2, 432–491. MR 1658092, DOI 10.1006/jfan.1998.3284
- B. L. van der Waerden, Algebra. Vol 1, Frederick Ungar Publishing Co., New York, 1970. Translated by Fred Blum and John R. Schulenberger. MR 0263582
- Florian-Horia Vasilescu, Analytic functional calculus and spectral decompositions, Mathematics and its Applications (East European Series), vol. 1, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1982. Translated from the Romanian. MR 690957
- Florian-Horia Vasilescu, Quaternionic Cayley transform, J. Funct. Anal. 164 (1999), no. 1, 134–162. MR 1694514, DOI 10.1006/jfan.1999.3389
- F.-H. Vasilescu, Operator moment problems in unbounded sets, Proceedings of the Memorial Conference for Bélà Szökefalvi-Nagy (in print).
Bibliographic Information
- F.-H. Vasilescu
- Affiliation: U.F.R. de Mathématiques, Université des Sciences et Technologies de Lille, U.M.R. du C.N.R.S. 8524, 59655 Villeneuve d’Ascq Cedex, France
- Email: fhvasil@agat.univ-lille1.fr
- Received by editor(s): July 10, 2001
- Published electronically: November 2, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1265-1278
- MSC (2000): Primary 47A57, 44A60
- DOI: https://doi.org/10.1090/S0002-9947-01-02943-9
- MathSciNet review: 1867381