Milnor classes of local complete intersections
HTML articles powered by AMS MathViewer
- by J.-P. Brasselet, D. Lehmann, J. Seade and T. Suwa
- Trans. Amer. Math. Soc. 354 (2002), 1351-1371
- DOI: https://doi.org/10.1090/S0002-9947-01-02846-X
- Published electronically: November 21, 2001
- PDF | Request permission
Abstract:
Let $V$ be a compact local complete intersection defined as the zero set of a section of a holomorphic vector bundle over the ambient space. For each connected component $S$ of the singular set $\operatorname {Sing}(V)$ of $V$, we define the Milnor class $\mu _{*}(V,S)$ in the homology of $S$. The difference between the Schwartz-MacPherson class and the Fulton-Johnson class of $V$ is shown to be equal to the sum of $\mu _{*}(V,S)$ over the connected components $S$ of $\operatorname {Sing}(V)$. This is done by proving Poincaré-Hopf type theorems for these classes with respect to suitable tangent frames. The $0$-degree component $\mu _{0}(V,S)$ coincides with the Milnor numbers already defined by various authors in particular situations. We also give an explicit formula for $\mu _{*}(V,S)$ when $S$ is a non-singular component and $V$ satisfies the Whitney condition along $S$.References
- Paolo Aluffi, Singular schemes of hypersurfaces, Duke Math. J. 80 (1995), no. 2, 325–351. MR 1369396, DOI 10.1215/S0012-7094-95-08014-4
- P. Aluffi, Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc. 351 (1999), 3989–4026.
- Paul Baum and Raoul Bott, Singularities of holomorphic foliations, J. Differential Geometry 7 (1972), 279–342. MR 377923
- Raoul Bott, Lectures on characteristic classes and foliations, Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971) Lecture Notes in Math., Vol. 279, Springer, Berlin, 1972, pp. 1–94. Notes by Lawrence Conlon, with two appendices by J. Stasheff. MR 0362335
- J.-P. Brasselet, Définition combinatoire des homomorphismes de Poincaré, Alexander et Thom, pour une pseudo-variété, The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 71–91 (French). MR 629124
- J.-P. Brasselet, From Chern classes to Milnor classes, Singularities - Sapporo 1998, Advanced Studies in Pure Math. 29, Math. Soc. Japan, 2000, pp. 31-52.
- J.-P. Brasselet and M.-H. Schwartz, Sur les classes de Chern d’un ensemble analytique complexe, The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 93–147 (French). MR 629125
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- William Fulton and Kent Johnson, Canonical classes on singular varieties, Manuscripta Math. 32 (1980), no. 3-4, 381–389. MR 595428, DOI 10.1007/BF01299611
- X. Gómez-Mont, J. Seade, and A. Verjovsky, The index of a holomorphic flow with an isolated singularity, Math. Ann. 291 (1991), no. 4, 737–751. MR 1135541, DOI 10.1007/BF01445237
- Helmut Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235–252 (German). MR 286143, DOI 10.1007/BF01578709
- Daniel Lehmann, Variétés stratifiées $C^\infty$: intégration de Čech-de Rham, et théorie de Chern-Weil, Geometry and topology of submanifolds, II (Avignon, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 205–248 (French). MR 1068742
- D. Lehmann, A Chern-Weil theory for Milnor classes, Singularities - Sapporo 1998, Advanced Studies in Pure Math. 29, Math. Soc. Japan, 2000, pp. 181-201.
- Daniel Lehmann, Marcio Soares, and Tatsuo Suwa, On the index of a holomorphic vector field tangent to a singular variety, Bol. Soc. Brasil. Mat. (N.S.) 26 (1995), no. 2, 183–199. MR 1364267, DOI 10.1007/BF01236993
- E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77, Cambridge University Press, Cambridge, 1984. MR 747303, DOI 10.1017/CBO9780511662720
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI 10.2307/1971080
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- T. Ohmoto and S. Yokura, Product formula for the Milnor class, to appear in Bull. Polish Acad. Sci. 48 (2000), 387–401.
- Adam Parusiński, A generalization of the Milnor number, Math. Ann. 281 (1988), no. 2, 247–254. MR 949831, DOI 10.1007/BF01458431
- Adam Parusiński and Piotr Pragacz, A formula for the Euler characteristic of singular hypersurfaces, J. Algebraic Geom. 4 (1995), no. 2, 337–351. MR 1311354
- A. Parusiński and P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Algebraic Geom. 10 (2001), 63-79.
- Reinhold Baer, Nets and groups, Trans. Amer. Math. Soc. 46 (1939), 110–141. MR 35, DOI 10.1090/S0002-9947-1939-0000035-5
- Marie-Hélène Schwartz, Champs radiaux sur une stratification analytique, Travaux en Cours [Works in Progress], vol. 39, Hermann, Paris, 1991 (French). MR 1096495
- M.-H. Schwartz, Classes de Chern des ensembles analytiques, Actualités Mathématiques, Hermann, Paris, 2000.
- José A. Seade and Tatsuo Suwa, A residue formula for the index of a holomorphic flow, Math. Ann. 304 (1996), no. 4, 621–634. MR 1380446, DOI 10.1007/BF01446310
- José Seade and Tatsuo Suwa, An adjunction formula for local complete intersections, Internat. J. Math. 9 (1998), no. 6, 759–768. MR 1644307, DOI 10.1142/S0129167X98000324
- Tatsuo Suwa, Classes de Chern des intersections complètes locales, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 1, 67–70 (French, with English and French summaries). MR 1435589, DOI 10.1016/S0764-4442(97)80105-X
- Tatsuo Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1998. MR 1649358
- Tatsuo Suwa, Dual class of a subvariety, Tokyo J. Math. 23 (2000), no. 1, 51–68. MR 1763504, DOI 10.3836/tjm/1255958807
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Hassler Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496–549. MR 192520, DOI 10.2307/1970400
- S. Yokura, On a Milnor class, Preprint 1997.
Bibliographic Information
- J.-P. Brasselet
- Affiliation: Institut de Mathématiques de Luminy, UPR 9016 CNRS, Campus de Luminy - Case 907, 13288 Marseille Cedex 9, France
- Email: jpb@iml.univ-mrs.fr
- D. Lehmann
- Affiliation: Département des Sciences Mathématiques, Université de Montpellier II, 34095 Montpellier Cedex 5, France
- Email: lehmann@darboux.math.univ-montp2.fr
- J. Seade
- Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, México 04510 D.F., México
- MR Author ID: 157790
- Email: jseade@matem.unam.mx
- T. Suwa
- Affiliation: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
- Email: suwa@math.sci.hokudai.ac.jp
- Received by editor(s): July 15, 2000
- Received by editor(s) in revised form: December 1, 2000
- Published electronically: November 21, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1351-1371
- MSC (2000): Primary 57R20; Secondary 14C17, 14J17, 32S55, 58K45
- DOI: https://doi.org/10.1090/S0002-9947-01-02846-X
- MathSciNet review: 1873009