Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Second order Lagrangian Twist systems: simple closed characteristics
HTML articles powered by AMS MathViewer

by J. B. Van den Berg and R. C. Vandervorst PDF
Trans. Amer. Math. Soc. 354 (2002), 1393-1420 Request permission

Abstract:

We consider a special class of Lagrangians that play a fundamental role in the theory of second order Lagrangian systems: Twist systems. This subclass of Lagrangian systems is defined via a convenient monotonicity property that such systems share. This monotonicity property (Twist property) allows a finite dimensional reduction of the variational principle for finding closed characteristics in fixed energy levels. This reduction has some similarities with the method of broken geodesics for the geodesic variational problem on Riemannian manifolds. On the other hand, the monotonicity property can be related to the existence of local Twist maps in the associated Hamiltonian flow. The finite dimensional reduction gives rise to a second order monotone recurrence relation. We study these recurrence relations to find simple closed characteristics for the Lagrangian system. More complicated closed characteristics will be dealt with in future work. Furthermore, we give conditions on the Lagrangian that guarantee the Twist property.
References
  • N.N. Akmediev, A.V. Buryak and M. Karlsson, Radiationless optical solitons with oscillating tails, Opt. Comm. 110 (1994), 540–544.
  • S. B. Angenent, The periodic orbits of an area preserving twist map, Comm. Math. Phys. 115 (1988), no. 3, 353–374. MR 931667, DOI 10.1007/BF01218016
  • Sigurd B. Angenent, Monotone recurrence relations, their Birkhoff orbits and topological entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 15–41. MR 1053797, DOI 10.1017/S014338570000537X
  • S. P. Novikov (ed.), Dynamical systems. IV, Encyclopaedia of Mathematical Sciences, vol. 4, Springer-Verlag, Berlin, 1990. Symplectic geometry and its applications; A translation of Sovremennye problemy matematiki. Fundamental′nye napravleniya, Tom 4, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985 [ MR0842907 (87j:58032)]; Translation by G. Wassermann; Translation edited by V. I. Arnol′d and S. P. Novikov. MR 1042758, DOI 10.1007/978-3-662-06793-2
  • V. I. Arnol′d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, [1989?]. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein; Corrected reprint of the second (1989) edition. MR 1345386, DOI 10.1007/978-1-4757-2063-1
  • S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states, Phys. D 8 (1983), no. 3, 381–422. MR 719634, DOI 10.1016/0167-2789(83)90233-6
  • Vieri Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231–305. MR 1131853, DOI 10.1007/BF01759307
  • Vieri Benci and Fabio Giannoni, Morse theory for functionals of class $C^1$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 8, 883–888 (English, with English and French summaries). MR 1187129
  • B. Buffoni, A. R. Champneys, and J. F. Toland, Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system, J. Dynam. Differential Equations 8 (1996), no. 2, 221–279. MR 1388874, DOI 10.1007/BF02218892
  • Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
  • M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193–222. MR 427826, DOI 10.1080/03605307708820029
  • S. Losinsky, Sur le procédé d’interpolation de Fejér, C. R. (Doklady) Acad. Sci. URSS (N.S.) 24 (1939), 318–321 (French). MR 0002001
  • R. Ghrist, J.B. Van den Berg and R.C.A.M. Vandervorst, Morse theory on spaces of braids and Lagrangian dynamics, preprint (2001).
  • J. Hulshof, J.B. Van den Berg and R.C.A.M. Vandervorst, Traveling waves for fourth-order semilinear parabolic equations, SIAM J. Math. Anal. 32 (2001), 1342–1374.
  • W. D. Kalies and R. C. A. M. VanderVorst, Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, J. Differential Equations 131 (1996), no. 2, 209–228. MR 1419012, DOI 10.1006/jdeq.1996.0161
  • W.D. Kalies and R.C.A.M. Vandervorst, Second order Lagrangians musings, in preparation.
  • W. D. Kalies, J. Kwapisz, and R. C. A. M. VanderVorst, Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Comm. Math. Phys. 193 (1998), no. 2, 337–371. MR 1618147, DOI 10.1007/s002200050332
  • W.D. Kalies, J. Kwapisz, J.B. Van den Berg and R.C.A.M. Vandervorst, Homotopy classes for stable periodic and chaotic patterns in fourth-order Hamiltonian systems, Comm. Math. Phys. 214 (2000), 573–592.
  • J. Kwapisz, Uniqueness of the stationary wave for the extended Fisher-Kolmogorov equation, J. Diff. Eq. 165 (2000), 235–253.
  • J. Kwapisz, (personal communication).
  • John David Logan, Invariant variational principles, Mathematics in Science and Engineering, Vol. 138, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. MR 0500376
  • J.N. Mather, Existence of quasi-periodic orbits for twist diffeomorphisms of the annulus, Topology 21 (1982), 457–467.
  • J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
  • V. J. Mizel, L. A. Peletier, and W. C. Troy, Periodic phases in second-order materials, Arch. Ration. Mech. Anal. 145 (1998), no. 4, 343–382. MR 1664530, DOI 10.1007/s002050050133
  • Patrice Le Calvez, Propriétés dynamiques des difféomorphismes de l’anneau et du tore, Astérisque 204 (1991), 131 (French, with English and French summaries). MR 1183304
  • L.A. Peletier and A.I. Rotariu-Bruma, Solitary wave solutions to a four-parameter model for water waves, preprint (1999).
  • L. A. Peletier and A. I. Rotariu-Bruma, Pulse-like spatial patterns described by higher-order model equations, J. Differential Equations 150 (1998), no. 1, 124–187. MR 1660258, DOI 10.1006/jdeq.1998.3480
  • L. A. Peletier and W. C. Troy, Spatial patterns described by the extended Fisher-Kolmogorov (EFK) equation: kinks, Differential Integral Equations 8 (1995), no. 6, 1279–1304. MR 1329841
  • L. A. Peletier and W. C. Troy, Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions, SIAM J. Math. Anal. 28 (1997), no. 6, 1317–1353. MR 1474217, DOI 10.1137/S0036141095280955
  • L. A. Peletier and W. C. Troy, Multibump periodic travelling waves in suspension bridges, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 3, 631–659. MR 1632819, DOI 10.1017/S0308210500021661
  • L.A. Peletier, W.C. Troy and J.B. Van den Berg Global branches of multi bump periodic solutions of the Swift-Hohenberg equation, Arch. Rat. Mech. Anal. 158 (2001), 91–153.
  • J. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A 15 (1977), 319–328.
  • Jan Bouwe van den Berg, The phase-plane picture for a class of fourth-order conservative differential equations, J. Differential Equations 161 (2000), no. 1, 110–153. MR 1740359, DOI 10.1006/jdeq.1999.3698
Similar Articles
Additional Information
  • J. B. Van den Berg
  • Affiliation: Division of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, United Kingdom
  • MR Author ID: 639255
  • Email: Jan.Bouwe@nottingham.ac.uk
  • R. C. Vandervorst
  • Affiliation: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
  • Address at time of publication: Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0190
  • Email: rvander@math.gatech.edu
  • Received by editor(s): January 18, 2000
  • Published electronically: November 8, 2001
  • Additional Notes: The first author was supported by grants TMR ERBFMRXCT980201 and NWO SIR13-4785
    The second author by grants ARO DAAH-0493G0199 and NIST G-06-605
  • © Copyright 2001 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 354 (2002), 1393-1420
  • MSC (1991): Primary 34C12, 49Jxx, 49S05, 70Hxx, 70Kxx
  • DOI: https://doi.org/10.1090/S0002-9947-01-02882-3
  • MathSciNet review: 1873011