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SECOND ORDER LAGRANGIAN TWIST SYSTEMS:
SIMPLE CLOSED CHARACTERISTICS

J. B. VAN DEN BERG AND R. C. VANDERVORST

Abstract. We consider a special class of Lagrangians that play a fundamen-
tal role in the theory of second order Lagrangian systems: Twist systems. This
subclass of Lagrangian systems is defined via a convenient monotonicity prop-
erty that such systems share. This monotonicity property (Twist property)
allows a finite dimensional reduction of the variational principle for finding
closed characteristics in fixed energy levels. This reduction has some similari-
ties with the method of broken geodesics for the geodesic variational problem
on Riemannian manifolds. On the other hand, the monotonicity property can
be related to the existence of local Twist maps in the associated Hamiltonian
flow.

The finite dimensional reduction gives rise to a second order monotone re-
currence relation. We study these recurrence relations to find simple closed
characteristics for the Lagrangian system. More complicated closed character-
istics will be dealt with in future work. Furthermore, we give conditions on
the Lagrangian that guarantee the Twist property.

1. Introduction

Various mathematical models for problems in nonlinear elasticity, nonlinear op-
tics, solid mechanics, etc. are derived from second order Lagrangian principles,
i.e., the differential equations are obtained as the Euler-Lagrange equations of a
Lagrangian L that depends on a state variable u, and its first and second or-
der derivatives. The Euler-Lagrange differential equations are fourth order and
are of conservative nature. In scalar models the Lagrangian action is defined by
J [u] =

∫
L(u, u′, u′′) dt. A second order Lagrangian system is, under suitable as-

sumptions on the u′′-dependence of L, equivalent to a Hamiltonian system on R4.
Trajectories of the Lagrangian system, and thus Hamiltonian system, lie on three di-
mensional sets ME

def= {H = E}, where H is the Hamiltonian (conserved quantity).
The sets ME are smooth manifolds for all regular E values of H (i.e. ∇H |ME 6= 0),
and are non-compact for all E ∈ R. It turns out that for Hamiltonian systems
that come from second order Lagrangians, one can find a natural two dimensional
section {u′ = 0} ∩ME which bounded trajectories have to intersect finitely or in-
finitely many times (possibly only in the limit) [19]. This section will be denoted
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1394 J. B. VAN DEN BERG AND R. C. VANDERVORST

by ΣE and ΣE = NE × R, where NE is a one dimensional set defined by

NE =
{

(u, u′′)
∣∣∣ ∂L

∂u′′
u′′ − L(u, 0, u′′) = E

}
(1)

(see Section 1.1 for more details).
The Hamiltonian flow induces a return map to the section ΣE , and closed trajec-

tories — closed characteristics — correspond to fixed points of iterates of this map.
In many situations the return map is an analogue of a monotone area-preserving
Twist map (see e.g. [6, 22, 25]). The theory developed in this paper will be cen-
tered around this property. Lagrangian systems that allow such Twist maps will be
referred to as Twist systems. Definitions and a more precise analysis will be given
in the forthcoming sections. This paper will be concerned with the basic properties
of Twist systems and the study of simple closed characteristics. These are periodic
trajectories that, when represented in the (u, u′)-plane (configuration plane of the
Lagrangian system), are simple closed curves. In [12, 13] we will investigate more
elaborate types of closed characteristics via a Morse type theory in relation with
braiding and knotting of trajectories. One of the main results of this paper is the
following.

Theorem 1. Consider a Twist system (Definition 3) with Lagrangian L(u, u′, u′′),
and let E be a regular value. If NE has a compact connected component N c

E,
then there exists at least one simple closed characteristic at energy level E with
u(t) ∈ πuNE for all t ∈ R (where πuNE is the projection of NE onto the u-
coordinate).

A precise statement of this result will be presented in Section 3.1 together with
information about the location and the Morse index of the trajectory (Theorem 12).
The results in this paper are proved for Twist systems. We can safely conjecture
that Theorem 1 remains true even without the Twist property. This can for exam-
ple be achieved via continuation to a Twist system within the class of simple closed
curves in the (u, u′)-plane. This exploits the idea that no simple closed characteris-
tics exist on the boundary of the class of simple closed curves. Certain mild growth
conditions on L are needed in this case (also for the continuation). This idea will
be the subject of future study, see [16].

For singular energy levels a similar theorem can be proved (Theorem 14). The
bottom line is that under the same compactness assumptions there exists a simple
closed characteristic in the broader sense of the word, i.e., depending on possible
singularities a closed characteristic is either a regular simple closed trajectory, a
simple homoclinic loop, or a simple heteroclinic loop. We also explain how singu-
larities can lead to multiplicity of closed characteristics (this issue is addressed in
full in [12] and [13]). In Section 4 we give some more background information on
Twist maps including a few observations deduced from numerical calculations. We
also briefly discuss the analogues of KAM-tori/circles for second order Lagrangian
systems, and the issue of integrability versus non-integrability. Throughout the
paper specific examples of physical systems will be given such as the extended
Fisher-Kolmogorov (eFK) and Swift-Hohenberg equations (u′′′′ − αu′′ + F ′(u) = 0
with α ∈ R). The theory developed here also applies to systems on M = S1 by
simply assuming L to be periodic in u.

The organization of the paper is as follows. We introduce the concepts that
play a major role in our analysis in Sections 1.1–1.3. The definition of the Twist
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SECOND ORDER LAGRANGIAN TWIST SYSTEMS 1395

property is stated in Section 2.1. Some examples of Twist systems are given in
Section 2.2 and in Section 2.3 we explain to what extent the assumptions can be
weakened. Subsequently, we apply the theory to Twist systems on energy levels
with (Sections 3.2 and 3.3) and without singular points (Sections 3.1). We deal
with non-compact interval components in Section 3.4. In Section 4 we list some
concluding remarks. Finally, the appendices are devoted to the classification of
equilibrium points and the proof of the Twist property for a specific class of second
order Lagrangians.

1.1. Second order Lagrangians. Let L : R3 → R be a C2-function of the
variables u, v, w. For any smooth function u : I → R, I ⊆ R, define the functional
J [u] =

∫
I L(u, u′, u′′) dt, which is called the (Lagrangian) action of u. The function

L may be regarded as a function on 2-jets of functions u : R→ R, and is generally
referred to as the Lagrangian1. The pair (L, dt) is called a second order Lagrangian
system on R. The action J of the Lagrangian system is said to be stationary at a
function u if δJ [u] = 0 with respect to variations δu ∈ C∞c (I,R)2, i.e.

δJ [u] = δ

∫
I

L(u, u′, u′′)dt =
∫
I

[
∂L

∂u
δu+

∂L

∂v
δu′ +

∂L

∂w
δu′′

]
dt

=
∫
I

[
∂L

∂u
− d

dt

∂L

∂v
+
d2

dt2
∂L

∂w

]
δudt = 0.

A stationary function u thus satisfies the differential equation

∂L

∂u
− d

dt

∂L

∂u′
+
d2

dt2
∂L

∂u′′
= 0,

which is called the Euler-Lagrange equation of the Lagrangian system (L, dt). The
Lagrangian action J is invariant under the R-action t 7→ t+ c, which by Noether’s
Theorem yields the conservation law( ∂L

∂u′
− d

dt

∂L

∂u′′

)
u′ +

∂L

∂u′′
u′′ − L(u, u′, u′′) = constant(2)

(see for instance [21]). This conservation law is called the Hamiltonian.
If L is strictly convex in the w-variable then the Lagrangian system (L, dt) is

equivalent to a Hamiltonian system on R4 with the standard symplectic structure.
Therefore we assume:
(H) ∂2

wL(u, v, w) ≥ δ > 0 for all (u, v, w).
The correspondence between a Lagrangian system (L, dt) on R and a Hamiltonian
system (H,ω) on R4 can be explained as follows. Let x = (pu, pv, u, v) be symplectic
coordinates for R4 with the symplectic form given by ω = dpu∧du+dpv∧dv. Define
the Hamiltonian H(x) = puv + L∗(u, v, pv), where

L∗(u, v, pv) = max
w∈R

{
pvw − L(u, v, w)

}
is is the Legendre transform of L. Since L is strictly convex in w we have that
L∗ is strictly convex in pv. Moreover, ∂pvL∗ =

(
∂wL

)−1(pv) = w, hence H(x) =

1In the case of a general smooth 1-dimensional manifold M one defines L as a smooth func-
tion on 2-jets of functions u : R → M . The action is then defined by considering functions
(u, u′, u′′) : I → J2M .

2If M is an arbitrary 1-dimensional manifold a different notion of variation is used.
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1396 J. B. VAN DEN BERG AND R. C. VANDERVORST

puv + pv
(
∂wL

)−1(pv) − L(u, v,
(
∂wL

)−1(pv)). For any function x : I → R the
Hamiltonian action is defined by A[x] =

∫
I

[
puu

′ + pvv
′ −H(x)

]
dt. A function x is

stationary for A if and only if the u-coordinate is stationary for J . In particular, the
Euler-Lagrange equations for A are of the form x′ = XH(x), where XH = J∇H and
J is defined by ω(x, Jy) = 〈x, y〉 (where 〈x, y〉 is the standard inner product in R4).
XH is called the Hamiltonian vector field associated to H . The correspondence
between u and its derivatives and x is given by: v = u′, pu = ∂u′L − p′v, and
pv = ∂u′′L. See for example [4] for more details on this correspondence. The state
space R4 of the Hamiltonian system (H,ω) is often referred to as the phase space
and J1R ' R2 is called the configuration space3.

If the Hamiltonian is sufficiently smooth, then the Hamiltonian system x′ =
XH(x) generates a local flow on R4. If we assume strict convexity of L in the
w-variable then H is of class C1. Under Hypothesis (H) the Hamiltonian H(x) is
a C2-function4, which in turn generates a local C1-flow φtH on R4 via the equation
x′ = XH(x).

Stationary functions of J satisfy Equation (2), which is equivalent to H(x) =
E ∈ R. For the associated Hamiltonian system (H,ω) this means that the station-
ary motions lie on the 3-dimensional sets ME = {x ∈ R4 | H(x) = E}. If ∇H 6= 0
on ME , then E is called a regular value and ME is a smooth non-compact manifold
without boundary. The vector field XH restricted to ME is non-singular when E is
a regular value. Indeed, the singular points of the vector field XH , i.e. points x∗ such
that XH(x∗) = 0, are exactly the critical points of the Hamiltonian, and thus only
occur at singular energy levels. Singular points are of the form x∗ = (pu, pv, u, 0)
and are given by: ∂uL(u, 0, 0) = 0, pu = ∂vL(u, 0, 0) and pv = ∂wL(u, 0, 0). Equiv-
alently, for a Lagrangian system an energy level E is said to be regular if and only
if ∂L

∂u (u, 0, 0) 6= 0 for all points u ∈ R that satisfy the relation −L(u, 0, 0) = E.
A bounded characteristic of a Lagrangian system (L, dt) is a function u ∈

C2
b (R,R) for which δ

∫
I L(u, u′, u′′) dt = 0 with respect to variations δu ∈ C2

c (I,R)
for any compact interval I ⊂ R. Since the Lagrangian is a C2-function of the
variables (u, v, w) it follows from the Euler-Lagrange equations that u ∈ C3

b (R,R),
∂L
∂w (·) ∈ C2

b (R,R), and
(
d
dt
∂L
∂w −

∂L
∂v

)
(·) ∈ C2

b (R,R) (regularity of extremals of L).
This is equivalent to having a function x ∈ C2

b (R,R4) which is stationary for A[x]:
a bounded characteristic for the associated Hamiltonian system (H,ω).

The question now arises, given an energy value E, do there exist bounded and/or
closed characteristics (see Sections 1.2 and 1.3 for a definition) on ME, and how
many, and how are these questions related to geometric and topological properties
of ME .

1.2. Cross-sections and area-preserving maps. From (H) it follows that
bounded solutions of the Euler-Lagrange equations only have isolated extrema (well-
posedness of the initial value problem for x′ = XH(x)). Consequently, a bounded
characteristic has either finitely, or infinitely many isolated local extrema. For
the associated Hamiltonian system this means that a bounded trajectory always
intersects the section ΣE = {v = 0} ∩ ME = {(pu, pv, u, 0) | pu ∈ R, pv =

3In the general case the configuration space is J1M and the phase space is TJ1M .
4In order to study stationary points of A additional regularity for H is not required. One does

usually need proper growth conditions on H.
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SECOND ORDER LAGRANGIAN TWIST SYSTEMS 1397

∂wL(u, 0, w), (u,w) ∈ NE}, where NE is defined by (1)5. In the case that there
are only finitely many (or zero) intersections, x must be asymptotic, as t → ±∞,
to singular points of XH , and thus critical points of H . If E is a regular value this
possibility is excluded. A bounded solution u is therefore a concatenation of mono-
tone laps between extrema — an increasing lap followed by a decreasing lap and
vice versa — at least if we assume that u does not have critical inflection points,
i.e. ΣE is not intersected in a point where w = 0. In this context it is important
to note that if E is a regular value then critical inflection points can only occur at
the boundary of

πuNE
def= {u | (u,w) ∈ NE for some w ∈ R} = {u |L(u, 0, 0) + E ≥ 0}.

The last equality follows from the definition of NE and the fact that

∂w(w∂wL− L) = w∂2
wL

in combination with hypothesis (H). We will be interested in bounded characteris-
tics that avoid critical inflection points. It will follow later on that at regular energy
values critical inflection points cannot occur (Lemma 7).

Recalling that w = ∂pvL
∗ we define N+

E = {(u, pv) ∈ NE | ∂pvL∗(u, 0, pv) > 0},
N−E = {(u, pv) ∈ NE | ∂pvL∗(u, 0, pv) < 0}, N0

E = {(u, pv) ∈ NE | ∂pvL∗(u, 0, pv)
= 0}. It follows from Hypothesis (H) that N+

E and N−E are smooth graphs over
the u-axis and πuN+

E = πuN−E . The sets Σ±E = N±E × R are smooth surfaces over
the (pu, u)-plane. Thus, the projections π± : Σ±E → πuN±E × R are invertible.
For a given bounded trajectory x(t) we therefore only need to know the (pu, u)-
coordinates of the intersections of x(t) with Σ±E . Consequently bounded character-
istics can be identified with sequences of points (pui , ui) in the (pu, u)-plane.

In the following we fix the energy level E and drop the subscript in the notation.
The vector field XH is tranverse to the section Σ+ ∪Σ− (non-transverse at Σ0). It
therefore makes sense to consider the Poincaré return maps, i.e. maps from Σ+ to
Σ− and from Σ− to Σ+, by following the flow ϕtH starting at Σ+ until it intersects
Σ−. It may happen that ϕtH does not intersect Σ− at all. For the points in Σ+

for which the flow does intersect Σ− we define a map T+ from Σ+ to Σ−6. The
same can be done for the map T− mapping from Σ− to Σ+. Since Σ± are graphs
over the (pu, u)-plane the above defined maps induce maps T± = π∓T±π

−1
± between

open regions Ω± ⊂ π±Σ±, i.e. T± : Ω± → Ω∓ (see also Figure 1). For any point
(pu, u) ∈ Ω±, T± is a local C1-diffeomorphism (since there are no critical inflection
points in N±).

Since bounded characteristics consist of increasing laps followed by decreasing
laps we seek fixed points of iterates of the composition map T = T− ◦ T+ (or
T = T+ ◦ T−). Fixed points are contained in the set

Ω∗ =
⋂
n∈Z

(
T− ◦ T+

)n(Ω+) ⊂ R2.

The maps T± are area-preserving maps with respect to the area form α = dpu ∧
du. This means that for any region U ⊂ Ω± it holds that

∫
U α =

∫
T±U

T ∗±α

(locally area-preserving). This was proved in [19] for the eFK-equation. We will
give a different proof of this fact here. Let (pu, u) ∈ U ⊂ Ω+, and recall that

5It is sometimes convenient to define NE in terms of coordinates (u, pv) by simply using the
formula pv = ∂wL.

6In ODE theory the study of this map is often called a shooting method.
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pu

pu

pu

u

u

Σ+

Σ−

π−
π+

Ω−Ω+ T+

T+

Figure 1. The map T+, which is induced by the flow, and its
projection T+.

ω = dpu ∧ du + dpv ∧ dv. Now T+ maps π−1
+ U ⊂ Σ+ to T+π

−1
+ U ⊂ Σ−. Since T+

preserves ω, and because Σ± ⊂ {v = 0} it follows that the 2-form α = dpu ∧ du is
preserved, and thus T+, as a map from Ω+ to Ω−, is area-preserving. This implies
that

pu2du2 − pu1du1 = dS∗(pu1 , u1),(3)

where (pu1 , u1) ∈ U and (pu2 , u2) = T+(pu1 , u1) ∈ T+U , and S∗ is a C1-function of
(pu1 , u1).

The map T+ is a (local) Twist map if u2 = u2(pu1 , u1) is strictly increasing
in −pu1 . It then follows from (3) that there exists a C1-function SE(u1, u2) =
S∗(pu1(u1, u2), u1) such that ∂1SE = −pu1 and ∂2SE = pu2 . This function is called
the generating function of the Twist map. A similar construction can be carried
out for T−. We refer to [5] for more details.

The function SE can be used to formulate a variational principle in terms of the
ui-variables. In the next chapter we will make a connection with the variational
principle for the Lagrangian action

JE [u] =
∫ τ

0

(
L(u, u′, u′′) + E

)
dt,

where the integration over [0, τ ] is between two consecutive extrema of u(t). In
relation to this connection we note the following (which does not depend on T+

being a Twist map or not).

Lemma 2. Let S∗(pu1 , u1) = JE [u], where u(t) is the trajectory starting at
π−1

+ (pu1 , u1) ∈ Σ+, and τ = τ(pu1 , u1) is the first intersection time at Σ−. Then
S∗ satisfies Equation (3).

Proof. Define the Hamiltonian action AE [x] =
∫ T

0 {puu′+ pvv
′−H(x) +E}dt, and

let (pu1 , u1) ∈ Ω+. Consider the trajectory {ϕtH(π−1
+ (pu1 , u1))}t=τ(pu1 ,u1)

t=0 , where
τ(pu1 , u1) is the first intersection time at Σ−. These trajectories vary smoothly with
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(pu1 , u1) ∈ Ω+. We now consider variations with respect to (pu1 , u1) ∈ Ω+. Using
the fact that (pu, pv, u, v) obeys the Hamilton equations and v(τ(pu1 , u1)) = 0, we
obtain

δAE [x] = puδu|τ0 + pvδv|τ0 +
[
puu

′ + pvv
′ −H(x) + E

]
τ
δτ

= puδu(τ)− puδu(0) + pv
[
δv(τ) + v′(τ)δτ

]
= pu2δu2 − pu1δu1,

where (pu2 , u2) = T+(pu1 , u1). It may be clear that AE [x] = JE [u], which proves
the lemma.

If T+ is a Twist map then for JE this implies that there exists a local continuous
family u(t;u1, u2) of extremals (and τ(u1, u2) varies continuously). Conversely,
we will show in the next chapter that the continuity conditions on the family of
extremals u(t;u1, u2) imply the Twist property.

We remark that instead of studying the maps T± one can study a related area-
preserving map which is well defined when T± are Twist maps. From T± we con-
struct the map T̃(

un+1

un

)
= T̃

(
un
un−1

)
, un−1, un, un+1 ∈ πuNE .

For this map we can use the generating function SE(u1, u2) to retrieve the maps
T±. We refer to [3, 6] for more details.

1.3. Closed characteristics. A special class of bounded characteristics are closed
characteristics. These are functions u that are stationary for J [u] and are τ -periodic
for some period τ . If we seek closed characteristics at a given energy level E we
can invoke the following variational principle:

Extremize
{
JE [u] | u ∈ Ωper

}
,(4)

where JE [u] =
∫ τ

0
(L(u, u′, u′′) + E) dt and Ωper =

⋃
τ>0C

2(S1, τ). It may be clear
that τ is also a parameter in this problem. Problem (4) is equivalent to

Extremize
{
JE [v, τ ] | (v, τ) ∈ C2(S1, 1)× R+

}
,(5)

where JE [v, τ ] =
∫ 1

0 (L(v, v
′

τ ,
v′′

τ2 ) +E)τds. This equivalent variational characteriza-
tion is convenient for technical purposes. Notice that the variations in τ guarantee
that any extremal of (4) has energy H(x) = E. The variational problem of finding
closed characteristics for a given energy value E can also be formulated in terms of
unparametrized closed curves in the configuration plane.

The Morse index of a closed characteristic u is defined as the number of negative
eigenvalues of the linear operator d2JE [u] on TuΩper ' C2(S1, 1)× R. The nullity
is the dimension of the kernel of d2JE [u]. The large Morse index is defined as the
sum of the Morse index and the nullity.

2. Twist systems

2.1. Generating functions. In this section we will introduce a class of Lagrangian
systems which satisfy a variant of the Twist property. Such systems can be studied
via generating functions. We start with systems for which the generating function
is of class C2. In Section 2.2 we will give a number of examples of such systems.
In Section 2.3 we explain how the theory also works with C1-generating functions
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1400 J. B. VAN DEN BERG AND R. C. VANDERVORST

which allows a weaker version of the Twist property (see Hypothesis (T′) in Section
2.3).

For a regular energy value E the set πuNE is a union of closed intervals. Con-
nected components of πuNE are denoted by IE and will be referred to as interval
components. Since E is regular it holds that L(u, 0, 0) + E > 0 for u ∈ int(IE),
and L(u, 0, 0) + E = 0 for u ∈ ∂IE . In terms of NE this means that connected
components of NE topologically are copies of R and/or S1. Let ∆ = {(u1, u2) ∈
IE × IE | u1 = u2} be the diagonal, then for any pair (u1, u2) ∈ IE × IE\∆ we
define

SE(u1, u2) = inf
u∈Xτ
τ∈R+

∫ τ

0

(
L(u, u′, u′′) + E

)
dt,(6)

where Xτ = Xτ (u1, u2) = {u ∈ C2([0, τ ]) | u(0) = u1, u(τ) = u2, u
′(0) = u′(τ) =

0, u′|(0,τ) > 0 if u1 < u2 and u′|(0,τ) < 0 if u1 > u2}. We remark that the notation
SE is slightly suggestive since it is not a priori clear that this definition of SE is
equivalent to the one in Section 1.2 (however, compare Lemma 2). If there is no
ambiguity about the choice of E we simply write S(u1, u2). At this point it is not
clear whether S is defined on all of IE × IE\∆.

Collections of monotone pieces, or laps, of u from u1 to u2 that minimize
∫

(L+E)
are the analogues of broken geodesics. Our goal now is to formulate a variational
problem in terms of the ui-coordinates of bounded characteristics replacing the
‘full’ variational problem for JE [u]. This will be a direct analogue of the method
of broken geodesics.

As in (5) there is an equivalent formulation of the variational problem above.
In view of this we consider the pair (v, τ), with v(s) = u(t) and s = t/τ . For the
special points (u1, u2) ∈ ∆ we define v(s) = u1 for all s ∈ [0, 1] and τ = 0 (and
S(u1, u1) = 0). A Lagrangian system (L, dt) is said to satisfy the Twist property
on an interval component IE if (with E a regular energy value):
(T) inf{JE [u] |u ∈ Xτ (u1, u2), τ ∈ R+} has a minimizer u(t;u1, u2) for all

(u1, u2) ∈ IE × IE \∆, and u and τ are C1-smooth functions of (u1, u2).
To be precise, by C1-smoothness we mean that (u1, u2) → (v, τ) is a C1-function
from int(IE × IE \∆) to C2([0, 1])×R+ and a C0-function on IE × IE . The results
presented in this paper will apply whenever the Twist property is satisfied on an
interval component IE7.

If E is a singular energy level with non-degenerate critical points, then we have
the same formulation of the Twist property with the following exceptions. Firstly,
C1-smoothness is only required for all (u1, u2) ∈ int(IE × IE \∆) such that u1 nor
u2 is a critical point8. Secondly, when an equilibrium point u∗ ∈ IE is a saddle-
focus or a center then τ(u1, u2) is not continuous at (u∗, u∗)9. In the case that u1

and/or u2 is an equilibrium point of real saddle type then τ can be ∞10. We refer

7Most of the results in this paper also hold for slightly weaker conditions. For example, when we
do not require the family of solutions/extrema to be minimizers of JE(u1, u2) then we obtain the
same results, the information on the index excluded. For the case where the family is continuous
but not C1 we refer to Section 2.3.

8Singular energy levels connected components of πuNE can have internal critical points. This
will be discussed in Section 3.3.

9It still holds that JE [u(t;u1, u2)]→ 0 as (u1, u2)→ (u∗, u∗).
10We then consider u on either [0,∞), (−∞, 0] or R (whichever is appropriate) and require

that u(t; u1, u2) converges on compact sets as u1 and/or u2 tends to the critical point.
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to Section 3.2 and Appendix A for more information on singular energy levels and
equilibrium points.

Definition 3. A Lagrangian system (L, dt) is called a Twist system on an interval
component IE if both Hypotheses (H) and (T) are satisfied.

Using Hypothesis (T) we can derive the following regularity properties for S.

Lemma 4. Let E be a regular value. If (L, dt) is a Twist system on an interval
component IE, then the function SE(u1, u2) is of class C2(int(IE × IE \ ∆)) ∩
C1(IE × IE \∆) ∩ C0(IE × IE).

Proof. Due to the smoothness assumption in (T) and the regularity of solutions of
the Euler-Lagrange equations (see Section 1.1), we have that u(t;u1, u2) varies
smoothly with (u1, u2) with values in C2. It is easily seen that SE(u1, u2) =
JE [u(t;u1, u2)] is a C1-function on IE × IE\∆. Lemma 2 and Equation (3) show
that ∂1S(u1, u2) = −pu1 and ∂2S(u1, u2) = pu2 . It follows from the smoothness
assumption in (T) and the fact that all solutions obey (2) that pu1 and pu2 are C1-
functions of (u1, u2)11, hence SE is a C2-function on int(IE × IE\∆). Continuity of
SE at the diagonal follows either via simple squeezing estimates in the variational
problem, or by analysing the shooting map12. This yields that SE |∆ ≡ 0.

If S is considered on I1
E × I2

E , where IiE , i = 1, 2, are different connected compo-
nents of πuNE , then one does not expect SE to be defined on all of I1

E × I2
E . The

next lemma reveals some important properties of the generating function S. For
the remainder of this section we assume that E is a regular value and we consider
interval components IE on which (L, dt) is a Twist system.

Lemma 5. Let E be a regular value. Then
(1) ∂1S(u1, u2) = −pu1 and ∂2S(u1, u2) = pu2 for all (u1, u2) ∈ IE × IE\∆,
(2) ∂1∂2S(u1, u2) > 0 for all (u1, u2) ∈ int(IE × IE\∆), and
(3) ∂n±S|int(∆) = +∞, where n± = (∓1,±1)T .13

Proof. Part (1) has been dealt with in the proof of Lemma 4. For part (2) of this
lemma we argue as follows: ∂1∂2S(u1, u2) = ∂pu2

∂u1
= −∂pu1

∂u2
. Because of the unique-

ness of the initial value problem for x′ = XH(x) the variable −pu1 is a strictly
increasing function of u2 (u1 fixed)14. In exactly the same way pu2 is a strictly in-
creasing function of u1 (u2 fixed). Therefore ∂1∂2S(u1, u2) ≥ 0. On the other hand
using the smooth dependence on initial data for x′ = XH(x) and the smoothness
of τ(u1, u2), it follows that both u2 = u2(u1, pu1) and u1 = u1(u2, pu2) are smooth
functions. This implies that ∂pu1

∂u2
6= 0 and ∂pu2

∂u1
6= 0, and thus ∂1∂2S(u1, u2) > 0.

As for part (3) we only consider the derivative in the direction n+ (the other case
is similar). We have that u′′′(0), u′′′(τ) → −∞ as u1 → u2 since u′′(0), u′′(τ) 6= 0

11At points t ∈ (0, τ) we have pu = (− ∂L
∂u′′ u

′′+L+E)/u′ which depends smoothly on (u1, u2)

since u′ 6= 0 for t ∈ (0, τ). The smooth dependence of the initial value problem for the Hamiltonian
flow now ensures that pu(0) and pu(τ) depend smoothly on (u1, u2) as well.

12In both cases the corner points ∂∆ have to be dealt with separately.
13This should be read as follows: when we approach a point (ũ, ũ) ∈ int(∆) from within the

region {u2 > u1} then ∂n+S →∞ as (u1, u2)→ (ũ, ũ).
14It could also be strictly decreasing but this is excluded by part (3) of the lemma.
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on int(∆). For pu it holds that

pu=∂vL(u, 0, w)− ∂2
vwL(u, 0, w)u′′ − ∂2

wL(u, 0, w)u′′′

and thus pui →∞, i = 1, 2.

The question of finding bounded characteristics for (L, dt) can now best be formu-
lated in terms of S. Extremizing the action JE over a space of ‘broken geodesics’
now corresponds to finding critical points of the formal sum

∑
n∈Z S(un, un+1).

Formally we seek critical points (bounded sequences) of the infinite sum

W (· · · , u−1, u0, u1, · · · ) =
∑
i∈Z

S(ui, ui+1).

Since this sum is usually not well-defined for bounded sequences (ui)i∈Z ∈ `∞(Z),
we say that a sequence is a critical sequence, or critical point of W , if

∂2S(ui−1, ui) + ∂1S(ui, ui+1) = 0, ∀i ∈ Z.(7)

Such equations are called second order recurrence relations (see e.g. [6, 22] for
related recurrence relations in the context of Twist diffeomorphisms). If (7) is
satisfied for all i ∈ Z, then u-laps can be glued to a C3-function for which all
derivatives up to order three match. Indeed, Equation (7) means that the third
derivatives match15. Since every u-lap satisfies the Euler-Lagrange equations we
then get a C3

b -function u that is stationary for J [u]. Of course, if we seek periodic
sequences, i.e. sequences (ui)i∈Z with ui+2n = ui, where 2n is called the period, we
may look for critical points of the restricted action W2n =

∑2n
i=1 S(ui, ui+1) defined

on I2n
E .16 This corresponds to finding closed characteristics for (L, dt). The period

can be linked to various topological properties of u and x (in the Hamiltonian
system (H,ω)) such as knotting and linking of closed characteristics, see [12, 13].
Moreover, periodic sequences as critical points of W2n have a Morse index, which
is exactly the Morse index of a closed characteristic u as a critical point of J |Ωper .

Lemma 6. Let E be a regular value. Let u = (ui)i∈Z ∈ `∞(Z), ui ∈ int(IE), be
a periodic sequence with period 2n, which is a stationary point of W2n with index
µ(u) ≤ 2n. Then the associated closed characteristic u for (L, dt) is stationary for
J [u] and the Morse index of u is also µ(u), and vice versa.

Proof. Let u be stationary for W2n, i.e. dW2n(u) = 0. Concatenating the u-laps
between the consecutive extrema ui yields a τ -periodic C3-function u that satisfies
the Euler-Lagrange equations of (L, dt). It may be clear that the function u is an
extremal of (4). The statement concerning the Morse index µ(u) = µ(u) can be
proved as follows. The assumption that ui ∈ int(IE) implies that u′′ 6= 0 at extrema
of u(t). This implies that the number of monotone laps is conserved under small
perturbations in Ωper =

⋃
τ>0C

2(S1, τ).
A function w in a small neighbourhood of u can be characterized by the heights

of the extrema u1, . . . , u2n (cylic), the distances between the extrema τ1, . . . , τ2n,

15It holds that ∂2S(ui−1, ui) + ∂1S(ui, ui+1) = ∂2
wL(ui, 0, u

′′
i )
(
−u′′′i + ũ′′′i

)
, where u′′′i is the

third derivative on the left and ũ′′′i is the third derivative on the right.
16The function W2n is continuous on I2n

E and is of class C2 on the set {(u1, ..., u2n) ∈
int(I2n

E ) | ui 6= ui+1, ∀ i = 1, .., 2n}, with u2n+1 ≡ u1.
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and the deviations vi(t) ∈ C2
0 ([0, 1]) of the minimizing laps, namely

w(t)=u
( τ(ui,ui+1)

τi
(t− Ti);ui, ui+1

)
+ vi

(
1
τi

(t− Ti)
)

for all t ∈ [Ti, Ti+1], i=1, . . . , 2n,

where u(t;ui, ui+1) and τ(ui, ui+1) is the minimizing pair defined in hypothesis (T),
and Ti =

∑i−1
k=1 τk. Consequently, TuΩper can be identified with (C2

0 ([0, 1])×R)2n⊕
R2n, separating the dependence on the heights of the extrema from the other contri-
butions. The linear operator d2JE [u] induces a linear operator on (C2

0 ([0, 1])×R)2n,
which is non-negative. Consequently the Morse index of d2JE [u] is equal to the
Morse index of the induced operator on R2n. This induced operator is in fact
d2W2n[u] (for more details see e.g. [23]: case of broken geodesics).

For points u1 ∈ ∂IE additional information about S can be obtained. Denote
the left boundary point of IE by u− and right boundary point by u+.

Lemma 7. Let E be a regular value. Let u− ∈ ∂IE (assuming that there ex-
ists a left boundary point) then ∂1S(u−, ũ) > −∂vL(u−, 0, 0) and ∂2S(ũ, u−) >
∂vL(u−, 0, 0) for ũ > u−. Similarly, if u+ ∈ ∂IE then ∂1S(u+, ũ) < −∂vL(u+, 0, 0)
and ∂2S(ũ, u+) < ∂vL(u+, 0, 0) for all ũ < u+.

Proof. Let us prove the above inequalities for ∂1S as the case for ∂2S leads to
an analogous argument. We start with the left boundary point u−. We seek an
increasing lap from u− to ũ. At u1 = u− it holds that −L(u−, 0, 0) = E, u′′1 = 0 and
∂uL(u−, 0, 0) > 0, which implies that u′′′1 (0) > 0. By contradiction, suppose that
u′(0) = u′′(0) = u′′′(0) = 0. On one hand we have p′v = ∂vL− pu and on the other
hand p′v = ∂2

uwLu
′ + ∂2

vwLu
′′ + ∂2

wLu
′′′. From the former and the Euler-Lagrange

equation we see that p′′v(0) = −∂uL(0) < 0, so that

lim
ε→0

(∂2
uwLu

′ + ∂2
vwLu

′′ + ∂2
wLu

′′′)(ε)
ε

= lim
ε→0

∂2
wLu

′′′(ε)
ε

= −∂uL(0) < 0.

We conclude (using condition (H)) that u′′′(t) < 0 in a right neighborhood of 0,
which contradicts the fact that we are dealing with an increasing lap.

It now follows that pu1 = ∂vL(u−, 0, 0) − ∂2
wL(u−, 0, 0)u′′′1 (0) < ∂vL(u−, 0, 0).

Therefore ∂1S(u−, ũ) = −pu− > −∂vL(u−, 0, 0). For the right boundary point u+

we obtain ∂1S(u+, ũ) = −pu+ < −∂vL(u+, 0, 0), since u is a decreasing lap.

Since SE is only continuous at ∂∆ the gradient is not well-defined there. The
following technical lemma states that near the corners ∂∆ the gradient ∇W2 points
away from the corner into IE × IE \ ∆, which allows us to use an interior set of
IE × IE\∆ preserving the boundary behavior as derived before (see Figure 2).

Lemma 8. Let IE = [u−, u+] be a compact interval component such that neither
u− nor u+ is an equilibrium point. Then there exists a δ0 > 0 such that

(i) ∂1S(u−, u−+δ)+∂2S(u−+δ, u−) > 0, ∂2S(u−, u−+δ)+∂1S(u−+δ, u−) > 0,
(ii) ∂1S(u+−δ, u+)+∂2S(u+, u+−δ) < 0, ∂2S(u+−δ, u+)+∂1S(u+, u+−δ) < 0,

for any 0 < δ ≤ δ0.

Proof. We prove part (i); the proof of part (ii) is completely analogous. The first
statement in (i) follows immediately from Lemma 7. For the second statement in
(i) we argue as follows. Choose δ > 0 sufficiently small. For an increasing lap
u(t), t ∈ [0, T ], connecting u− and u− + δ, it holds that p′′v(0) < 0 (from the
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(u−,u− + δ)

(u+ − δ,u+)

(u−, u−)

u2

u1

(u+,u+)

Figure 2. The behavior of W2 near ∂∆. The transversality of
∂W2 at u1 = u+ − δ, and u2 = u− + δ follows from the twist
property.

Euler-Lagrange equation) and in fact p′′v(t) < 0 on [0, T ] for small δ since T → 0
as δ → 0. Moreover, p′v(0) = ∂2

wLu
′′′(0) > 0 as in the proof of Lemma 7. The

points (u−, pv(0)) and (u−+ δ, pv(T )) both belong to NE . The set NE is a smooth
closed curve in the (u, pv)-plane whose projection onto the u-axis is [u−, u+]. At
(u−, pv(0)) the tangent to NE is vertical (since ∂pvL∗(u−, 0, pv(0)) = u′′(0) = 0
and ∂uL

∗(u−, 0, pv(0)) = ∂uL(u−, 0, 0) < 0). Because u′′(T ) < 0 and δ is small,
it follows that pv(T ) < pv(0). Therefore p′v(t0) < 0 for some intermediate point
t0 ∈ (0, T ). The definite sign of p′′v then implies that p′v(T ) < 0.

Now

∂2S(u−, u− + δ) = pu(T ) = ∂vL(u− + δ, 0, u′′(T ))− p′v(T )

> ∂vL(u− + δ, 0, u′′(T )).

The same can be done for a decreasing lap ũ(t), t ∈ [0, T ], connecting u− + δ and
u−, which gives ∂1S(u− + δ, u−) = −p̃u(0) = −∂vL(u− + δ, 0, ũ′′(0)) + p̃′v(0) >
−∂vL(u− + δ, 0, ũ′′(0)). This implies that

∂2S(u−, u− + δ) + ∂1S(u− + δ, u−)

> ∂vL(u− + δ, 0, u′′(T ))− ∂vL(u− + δ, 0, ũ′′(0)).

Noticing that u′′(T ) = ũ′′(0) finishes the proof.

2.2. Examples of Twist systems. An example of a class of Lagrangians for
which we can verify the Twist property in various cases is given by L(u, u′, u′′) =
1
2 |u′′|2 +K(u, u′). Most of the fourth order equations coming from physical models
are derived from Lagrangians of this form. We could tag such systems as fourth or-
der mechanical systems based on the analogy with second order mechanical systems
given by Lagrangians of the form L(u, u′) = 1

2 |u′|2+K(u) (integrable systems). The
Lagrangian L clearly satisfies Hypothesis (H) and (L, dt) is thus equivalent to the
Hamiltonian system (H,ω) with ω the standard symplectic form on R4 (see Sec-
tion 1) and H(x) = puv + 1

2p
2
v − K(u, v). For a regular energy value E the set

πuNE is given by πuNE = {u | K(u, 0) + E ≥ 0}. If E is regular it holds that
K(u, 0) + E > 0 for u ∈ int(IE), and K(u, 0) + E = 0 for u ∈ ∂IE .
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Lemma 9. Let IE be a connected component of πuNE (E not necessarily regu-
lar17). Assume that

(a) ∂K
∂v v −K(u, v)− E ≤ 0 for all u ∈ IE and v ∈ R,

(b) ∂2K
∂v2 |v|2 − 5

2

{
∂K
∂v v −K(u, v)− E

}
≥ 0 for all u ∈ IE and v ∈ R.

Then for any pair (u1, u2) ∈ IE×IE\∆ Problem (6) has a unique minimizer (u, τ) ∈
Xτ × R+ (in fact the only critical point), and the minimizer u(t;u1, u2) depends
C1-smoothly on (u1, u2) for (u1, u2) ∈ int(IE × IE\∆)18.

For the proof of this lemma we refer to Appendix B.
At this point we are not able to prove that the Twist property holds for more

general systems under some mild growth conditions on K without assuming (a)
and (b). However, numerical experiments (see Section 4.1) for various Lagrangians
suggest that Lemma 9 is still valid, although we do not have a proof of this fact.
Milder conditions on K sometimes only allow the existence of a continuous family
u(t;u1, u2). We come back to this case in Section 2.3. The conditions given in
Lemma 9 already allow for a large variety of Lagrangians that occur in various
physical models. We will give a few examples of such systems now.

2.2.1. The eFK/Swift-Hohenberg system. The eFK/Swift-Hohenberg Lagrangian is
given by L(u, u′, u′′) = 1

2 |u′′|2 + α
2 |u′|2 + F (u), where α ∈ R and F is a smooth

potential function. The Hamiltonian in this case is H(x) = puv+ 1
2p

2
v− α

2 v
2−F (u).

Connected components of πuNE are sets of the form {u | F (u) + E ≥ 0}.
In the case that α > 0 this L is referred to as the eFK-Lagrangian (see e.g.

[15, 17, 18]), and in the case α ≤ 0 it is usually referred to as the Swift-Hohenberg
Lagrangian [24, 31, 32]. For example, F (u) = 1

4 (u2−1)2 is the classical eFK/Swift-
Hohenberg potential [28, 29], F (u) = 1

3u
3 − 1

2u
2 gives the water-wave model [9],

F (u) = − 1
4 (u2 − 1)2 is the potential of a nonlinear optics model [1].

If α ≤ 0 then the conditions (a) and (b) are satisfied for any interval component
IE . The Swift-Hohenberg system is therefore a Twist system for all interval com-
ponents. For α > 0 this is not immediately clear (conditions (a) and (b) are not
satisfied)19. More details on eFK/Swift-Hohenberg systems are given in Section
3.4.

2.2.2. The suspension-bridge model. The suspension bridge model is a special case
of the Swift-Hohenberg equation, namely L(u, u′, u′′) = 1

2 |u′′|2 −
c2

2 |u′|2 + F (u),
with F (u) = eu − u− 1 (see [30]). Clearly, the suspension bridge model is a Twist
system for all c ∈ R. For more details see Section 3.4. This model is particularly
intriguing due to the specific form of the potential function F . The growth of F for
u→∞ is essentially different from the growth for u→ −∞ which has far reaching
consequences for the set of closed characteristics.

2.2.3. The fifth order KdV equation. Consider L(u, u′, u′′) = 1
2 |u′′|2 + K(u, u′),

where K(u, u′) = 1
2 (α+ 2µu)|u′|2 + F (u) with F (u) = κ

3u
3 + σ

2u
2, which describes

traveling waves in a fifth order Korteweg-de Vries equation (see e.g. [26]). In

17If E is a singular energy level, then we require the critical points to be non-degenerate.
18If E is a singular energy level, then C1-regularity holds for all (u1, u2) ∈ int(IE × IE\∆) for

which neither u1 nor u2 is a critical point.
19J. Kwapisz [20] proves that the (C0) Twist property (T′) (see Section 2.3) is satisfied for the

eFK Lagrangian (α > 0) on interval components IE for which F (u) +E has at most one internal
extremum (a maximum).
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order for the theory to be applicable the conditions on K in Lemma 9 imply that
α+2µu ≤ 0 for u ∈ IE . The case µ = 0 is the Swift-Hohenberg equation again. Let
us assume for example that κ, σ > 0, then one finds compact intervals IE for values
− σ3

6κ2 < E ≤ 0. These intervals are contained in [− 3σ
2κ , 0]. For µ > 0 the condition

becomes u < − α
2µ , which is for instance satisfied for all u ∈ IE if α < 0. For µ < 0

the condition becomes u > − α
2µ , which is satisfied for all u ∈ IE if α < 2σµκ . Many

more combinations can be found by also varying the signs of κ and σ.

2.3. The C0-Twist property. As we already remarked before, the theory devel-
oped in this paper can be adjusted for C1-generating functions. We will point out
the difficulties and how the theory has to be adjusted at the end of this section.
First we start with a weaker version of the Twist property that ensures the existence
of C1-generating functions.

(T′) inf{JE [u] |u ∈ Xτ (u1, u2), τ ∈ R+} has a minimiser u(t;u1, u2) for all (u1, u2)
∈ IE × IE \∆, and u and τ are continuous functions of (u1, u2).

Hypothesis (T′) is often easier to verify than the stronger Hypothesis (T). Let IE
be an interval component and (L, dt) is a Twist system on IE with respect to
Hypothesis (T′). Then pu2(u1, u2) is strictly increasing in u1 and −pu2(u1, u2) is
strictly increasing in u2, and both are continuous in (u1, u2). The maps T± as
described in Section 1.2 are therefore monotone (C1-) Twist maps, which have a
C1-generating function SE(u1, u2) = JE [u(t;u1, u2)].

Lemma 10. Let IE be an interval component. If (L, dt) is a Twist system with
respect to Hypothesis (T ′), then SE is a C1-generating function on IE × IE\∆.

Property (2) of Lemma 5 is now replaced by the property that ∂1S and ∂2S
are increasing functions of u1 and u2 respectively. The difficulties in working with
C1-generating functions are the definition of the Morse index and the gradient
flow of W =

∑
i S(ui, ui+1). In Section 3 we use the gradient flow of W to find

other critical points besides minima and maxima. One way of dealing with this
problem is to approximate S by C2-functions. A C1-Morse/Conley index can then
be defined (see for instance [7, 8]). An analogue of Lemma 6 can also be proved now.
Other properties of S that we use in this paper, such as construction of isolating
neighborhoods, do not need the C2-regularity. For this reason we will continue with
C2-function keeping in mind that all result carry over to the C1-case.

3. Existence

3.1. Simple closed characteristics for compact sections NE. The properties
of S listed in Section 2.1 can be used to derive an existence result for simple closed
characteristics. Before stating the theorem we need to introduce some additional
notation: IE × IE\∆ = D+

E ∪D
−
E , where D+

E = {(u1, u2) ∈ IE × IE\∆ | u2 > u1},
and D−E is defined analogously. The function W2(u1, u2) = S(u1, u2) + S(u2, u1) is
a C2-function on int(IE × IE\∆). Since W2(u1, u2) = W2(u2, u1) we can restrict
our analysis to D+

E .
Throughout this section we again assume that E is regular and (L, dt) is a Twist

system on IE .
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u 1
=u 2

u2=u+

u
1=

u
−

D+
Ε

Figure 3. A picture of D+
E . The arrows denote the direction

of the gradient ∇W2 schematically (of course the gradient is not
perpendicular to the boundary everywhere). Clearly the maximum
of W2 is attained in the interior of D+

E .

Lemma 11. Assume that πuNE contains a compact interval component IE . Then
W2 has at least one maximum on D+

E
20.

Proof. We have that W2|∆ = 0 and W2 is strictly positive near int(∆) by Lemma 5
part (3). In fact the gradient ∇W2 points away from ∆ near the diagonal and also
points away from ∂∆ near the corner points (Lemma 8). Following Figure 2 we
consider the region Dδ ⊂ D+

E defined by Dδ = {(u1, u2) ∈ D+
E | u2 ≥ u− + δ, u1 ≤

u+− δ}. Since the set Dδ is compact, W2 must attain a maximum on set Dδ. It is
immediately clear that max(u1,u2)∈Dδ W2(u1, u2) > 0.

Denote by n1 = (1, 0)T the inward pointing normal on the left boundary B1 =
{(u−, u2) |u2 ∈ IE} ∩ Dδ and by n2 = (0,−1)T the inward pointing normal on
B2 = {(u1, u

+) |u1 ∈ IE}∩Dδ. Using Lemma 7 we can now compute ∂W2
∂n1

and ∂W2
∂n2

.
For example let u1 = u−, then ∂W2

∂n1
= ∂1S(u−, u2)+∂2S(u2, u

−) > −∂vL(u−, 0, 0)+
∂vL(u−, 0, 0) = 0. Similarly, using Lemma 7, we derive that ∂W2

∂n2
|B2 > 0. It follows

from Lemma 8 that ∇W2 is also pointing inward at the boundaries {u1 = u+ − δ}
and {u2 = u− + δ} (see Figure 2). Summarizing, ∇W2 is pointing inward at ∂Dδ,
and W2|∆ = 0. Therefore the maximum is attained in int(Dδ) (see also Figure 3).

If we study W2n, n > 1, we do not necessarily find new closed characteristics for
(L, dt), i.e. critical points of W2n of higher index may be the same closed charac-
teristic traversed more than once. In the following sections we will describe some
mechanisms that yield more geometrically distinct closed characteristics.

The above lemma can be slightly rephrased for Lagrangian systems (see
Lemma 6). We do not have information about the nullity of d2JE(u1, u2), so that

20From straightforward Morse theory for W2 on D+
E we obtain in addition that b0 ≥ 0, b1−b0 ≥

0 and b2 − b1 + b0 = 1, where bi is the number of critical points of index i (in the case that W2 is
a Morse function).
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the large Morse index21 of the solutions may be greater than 2, but the Morse index
is certainly smaller than or equal to 2.

Theorem 12. Assume that πuNE contains a compact interval component IE . Then
(L, dt) contains at least one simple closed characteristic u(t) ∈ int(IE) with large
Morse index greater than or equal to 2 and Morse index less than or equal to 2.

Theorem 12 states that the associated Hamiltonian system (H,ω) has at least
one closed characteristic on ME . Using the theory of this paper Theorem 12 is
proved without the Twist property in [16]. The above theorem is reminiscent of first
order Lagrangian systems: L(u, u′) with Euler-Lagrange equation ∂L

∂u −
d
dt

∂L
∂u′ = 0.

Such systems may be labeled as mechanical systems if ∂u′L > 0. On the compact
components of {(u, u′) | ∂L∂u′ u′−L(u, u′) = E} closed characteristics exist (integrable
system).

If L is invariant with respect to the symmetry t 7→ −t it holds that L(u, v, w)
= L(u,−v, w) for all (u, v, w) ∈ R3. A consequence of this symmetry is that
S(u1, u2) = S(u2, u1) which implies that we can study just S (instead of W2) to find
simple closed characteristics in this case. Moreover, this symmetry of L carries over
to the simple closed characteristic: u(t) is symmetric with respect to its extrema.
Some Lagrangian systems are also invariant under the symmetry u 7→ −u which
yields the relation L(u, v, w) = L(−u,−v,−w). If 0 ∈ πuNE then there is at least
one closed characteristic on the anti-diagonal u1 = −u2. If the global maximum
of W2 is not on the anti-diagonal u1 = −u2, then there are at least 2 more closed
characteristics (by symmetry).

If we consider non-compact interval components IE there is no topological re-
striction that forces the existence of closed characteristics, and there need not exist
any. In order to deal with this case (in forthcoming sections) more information
about L is needed: asymptotic behavior (see Section 3.4).

3.2. Singular energy levels. If E is a singular energy level then there exist points
u ∈ πuNE for which ∂uL(u, 0, 0) = 0 and L(u, 0, 0) + E = 0. For a singular value
E the connected components of NE are either smooth manifolds (R or S1), or
they are characterized as: N c

E ' (R∨)S1 ∨ · · · ∨ S1(∨R). The points in R2 on
which NE fails to be a manifold lie on the u-axis, and are exactly the points u for
which ∂uL(u, 0, 0) = 0 and L(u, 0, 0) + E = 0. The set of such points — critical
points — is denoted by C(IE). As before, πuNE is a union of closed intervals. An
interval component IE is defined as a subset of πuNE such that L(u, 0, 0) + E > 0
for all u ∈ int(IE) and L(u, 0, 0) + E = 0 for u ∈ ∂IE . Since E is singular
two interval components I1

E and I2
E may have non-empty intersection, i.e. I1

E ∩
I2
E = {one point} ⊂ C(IE). Concatenations of interval components are discussed

in Section 3.3. If we consider interval components with critical points geometric
properties come into play. We assume that (L, dt) is a Twist system for the interval
components that we consider.

Let IE be an interval component for which u− ∈ ∂IE is a critical point. In
order to prove the analogue of Lemma 7 we need to know whether u′′′(0) is zero
or not. This is determined by τ(u−, u2), i.e. if τ(u−, u2) < ∞ then u′′′(0) > 0
(assuming u2 > u−), and if τ(u−, u2) = ∞ then u′′′(−∞) = 0 (in the case that
τ =∞ we consider u on [−τ, 0] using translation invariance). These two cases can
be distinguished by studying the singularity at u−. We can compute the spectrum

21The large Morse index is defined as the sum of the Morse index and the nullity.
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of u− which we will denote by σ(u−). We assume that we are dealing with non-
degenerate singular points, i.e. 0 6∈ σ(u−). Critical points on the boundary of
interval components obey ∂2

uL(u, 0, 0) > 0. It is shown in Appendix A that there are
three possible behaviors for σ(u−): σ(u−) ⊂ R, σ(u−) ⊂ iR, or σ(u−) ⊂ C\{R∪iR}.
In the latter case there is one eigenvalue in each quadrant. The three possible
behaviors are categorized as real saddle, center and saddle-focus respectively. If
σ(u−) ⊂ C\R (center or saddle-focus), then τ(u−, u2) < ∞ for all u2 ∈ IE . It is
immediately clear that Theorem 12 is still valid in that case. Also, if both u+ and
u− are critical points and have their spectrum in C\R, Theorem 12 remains true.

Theorem 13. Let E be a singular value and assume that σ(C(IE)) ⊂ C \R. Then
(L, dt) contains at least one simple closed characteristic u(t) ∈ int(IE) with large
Morse index greater than or equal to 2 and Morse index less than or equal to 2.

The way to attack the problem of finding closed characteristics at singular energy
levels in general is to again consider the function W2(u1, u2) = S(u1, u2)+S(u2, u1).
Since W2|∆ ≡ 0 and strictly positive near ∆, W2 attains its global maximum in
IE × IE\∆. As was already pointed out before, the maximum is attained in the
interior of IE × IE\∆ if there are no critical points of L(u, 0, 0) in ∂IE , or if critical
points of L(u, 0, 0) have complex spectrum (Theorem 13). Thus in order for W2 to
attain its global maximum on the boundary, the interval component ∂IE needs to
contain at least one critical point of L(u, 0, 0) with real spectrum.

The next question is: suppose W2 attains its maximum at ∂(IE × IE\∆), does
this maximum correspond to a simple closed trajectory for (L, dt)? Again from the
previous we know that at a point (u1, u2) ∈ ∂(IE × IE\∆) it holds that ∂1W2 ≥ 0
if u1 = u− and ∂2W2 ≤ 0 if u2 = u+. A boundary maximum for which u1 =
u− and u2 = u+ is called a co-dimension 2 point, and the remaining boundary
points are called co-dimension 1 points. It is clear that at a co-dimension 1 point,
for example at u1 = u−, it holds that ∂2W2 = 0. Since we are assuming that
this point is a maximum, and because ∂1W2 ≥ 0 it follows that the maximum
is in fact a critical point. The same holds for a co-dimension 1 point at u2 =
u+. Such points correspond to solutions u(t) for which u′′′(−∞) = u′′′(∞) = 0,
and u(−∞) = u(∞) = u−, and u(t) is thus a homoclinic orbit. By the same
reasoning co-dimension 2 points are also critical points. Such a point corresponds
to a heteroclinic loop (two heteroclinic connections that form a loop).

Summarizing, we can introduce the notion of closed characteristic in the broad
sense of the word: a simple closed periodic orbit, a simple homoclinic loop, or a
simple heteroclinic loop (they all form a simple closed loop in the configuration
plane). If we use this definition we obtain the following theorem.

Theorem 14. Assume that πuNE has a compact interval component IE then
(L, dt) has at least one simple closed characteristic in the broad sense.

It is clear from the previous that a necessary condition for (L, dt) to have a
simple homoclinic loop to u− is that u− is a critical point of L(u, 0, 0) that has
real spectrum (real saddle). The same holds for u+. A necessary condition to find
a simple heteroclinic loop between u− and u+ is that both u− and u+ are real
saddles. Unfortunately, these conditions need not be sufficient22.

22For the eFK Lagrangian with F (u) = 1
4

(u2 − 1)2 it has been shown that the simple closed
characteristic found in Theorem 14 corresponds to a heteroclinic loop if and only if the equilibrium
points are real saddles [28, 33, 19].
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One way to guarantee the existence of a simple homoclinic loop to u− ∈ C(IE)
is that τ(u−, u2) = τ(u2, u

−) = ∞ for all u2 ∈ IE
23, and either u+ 6∈ C(IE)

or u+ has complex spectrum. In that case ∂1S(u−, u2) = −∂vL(u−, 0, 0) for all
u2 ∈ IE . In terms of W2 this yields that ∂1W2(u−, u2) = 0 for all u2 ∈ IE .
We can now restrict W2 to the line-segment {u1 = u−} × IE . Define W1(u) =
W2|{u1=u−}×IE = S(u−, u) + S(u, u−). It easily follows that (compare Lemma 7)
W1(u−) = 0, W1(u− + ε) > 0 for ε > 0 sufficiently small24 and W ′1(u+) < 0, and
thus W1 has at least one global maximum u∗ on (u−, u+). The point u∗ corresponds
to a homoclinic orbit to u = u−.

Regarding the Morse index of this point/orbit we note the following. If u∗ is
a (local) maximum of W2 on D+

E then the large Morse index is again equal to 2.
The corresponding homoclinic orbit has large Morse index greater than or equal
to 2 and Morse index less than or equal to 2. However, restricted to the class of
functions that are homoclinic to u− it has large Morse greater than or equal to 1
and Morse index less than or equal to 1 (mountain-pass critical point)25.

3.3. Concatenation of interval components. Up to this point we have only
considered single interval components IE . When E is a singular value then two
interval components I1

E and I2
E may have a common boundary point. This bound-

ary point is then necessarily a critical point. The concatenation of the interval
components IiE , i = 1, 2, will be denoted by I#

E , and the critical point in I1
E ∩ I2

E is
denoted by u∗. If (L, dt) is a Twist system on both interval components I1

E and I2
E

it does does not necessarily mean that (L, dt) is a Twist system on the concatenated
interval I#

E . One can easily give examples where (L, dt) fails to satisfy the Twist
property on I#

E .26 However, if (L, dt) is Twist system on I#
E , and this is indeed

true in many cases, more solutions can be found. In order to study this case we
will use the gradient flow of W2:

u′1 = ∂2S(u2, u1) + ∂1S(u1, u2),(8a)
u′2 = ∂2S(u1, u2) + ∂1S(u2, u1), ui ∈ int(IE), ∀i = 1, 2(8b)

with ui ∈ int(I#
E ) for i = 1, 2.

As before we can restrict our analysis to D+
E . Define D+

E,1 = {(u1, u2) ∈ I1
E ×

I1
E | u2 > u1}, D+

E,2 = {(u1, u2) ∈ I2
E×I2

E | u2 > u1}, and D+
E,3 = I1

E×I2
E\(u∗, u∗).

On the domains D+
E,1 and D+

E,2 one can again apply Theorem 14 which yields the
existence of maxima on each of these components. Note that this is independent of
the type of u∗ (spectrum σ(u∗)). The following theorem will crucially use the fact
that u∗ is a critical point for which σ(u∗) ⊂ C\{R ∪ iR}, i.e. a saddle-focus.

23It follows from Lemma 5 part (2) that it in fact suffices that τ(u−, u+) = τ(u+, u−) =∞.
24It follows from the linearization around u− that pu2 < 0 for u− < u2 < u− + ε when ε is

small enough.
25 For the eFK Lagrangian with Fa(u) =

∫ u
1 (s2 − 1)(s− a)ds, 0 ≤ a < 1, and α ≥ 2

√
2(1 − a)

the Twist property is satisfied on the interval component I0 = [u−, 1] and τ(u−, 1) =∞. Therefore
there exists a homoclinic loop in this case. The existence of such solutions for this problem was
first proved in [27] by means of a different method. If the case a = 0 is considered one obtains a
heteroclinic loop (see e.g. [17]).

26For example consider the eFK Lagrangian with F (u) = 1
4

(u2 − 1)2. Take E = 0, then

πuN0 = R is the concatenation of three intervals. If α ≥ 2
√

2 then (L, dt) is not a Twist system

on I#
0 = R. However for α ≤ 0 the Twist property is satisfied on R, and numerical experiments

indicate the same for 2
√

2 > α > 0. This is related to the behavior of the singularities u = ±1
(see Section 4.1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SECOND ORDER LAGRANGIAN TWIST SYSTEMS 1411

u2=u+

u
1=

u
−

u 1
=u 2

(u
* ,u

* )

DE,3
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+
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+

Figure 4. The triangleD+
E when a connected component of πuNE

consists of two compact interval components. The arrows denote
(schematically) the direction of the gradient ∇W2. Clearly W2 has
maximum in D+

E,1 and D+
E,2 and a saddle point in D+

E,3.

Lemma 15. Let I#
E be a concatenation of two compact interval components I1

E

and I2
E and assume that the critical point u∗ ∈ I1

E ∩ I2
E is a saddle-focus. Then W2

has at least one maximum on each of the components D+
E,i, i = 1, 2, and W2 has

a saddle point (critical point with large Morse index equal to 1) on the component
D+
E,3.

Proof. The existence of at least one maximum on each of the components D+
E,i, i =

1, 2, follows directly from Theorem 14. As for the existence of saddle points we argue
as follows (see also Figure 4). Applying Lemma 7 we obtain that ∂1W2|∂I1

E×I2
E
> 0

and ∂2W2|I1
E×∂I2

E
> 0. In order to successfully apply Conley’s Morse theory we need

to choose an appropriate subset of DE,3 which will serve as an isolating neighbor-
hood. Near (u1, u2) = (u∗, u∗) we can find a small solution of the Euler-Lagrangian
equation by perturbing from a linear solution. Consider the unique monotone lap
u(t) for which u(0) = u1 = u∗ − δ and u(τ) = u∗ + δ. Since u∗ is critical point of
saddle-focus type, it follows that u′′′(0) < 0 and u′′′(τ) < 0 for δ sufficiently small27.
Straightforward calculation shows that ∂1∂2W2 = ∂1∂2S(u1, u2) + ∂1∂2S(u2, u1) >
0. These two facts combined show that ∂1W2(u∗ − δ, u2) < 0 for all u2 ≤ u∗ + δ,
and ∂2W2(u1, u∗+ δ) > 0 for all u1 ≥ u∗− δ. Define Nδ = D+

E,3\{(u1, u2) |u∗− δ <
u1 < u∗, u∗ + δ > u2 > u∗}. The set Nδ is a closed subset of D+

E,3 and is iso-
lating with respect to the gradient flow of W2.28 The next step is to compute
the Conley index of the maximal invariant set Inv(Nδ) ⊂ Nδ. It suffices here to
compute the homological index (see [10]) of Inv(Nδ). In order to do so we need
to find an index pair for Inv(Nδ). Let ∂I1

E = {a−1 , a+
1 }, ∂I2

E = {a−2 , a+
2 }. Let

N−δ = {u1 = u∗, u∗ + δ ≤ u2 ≤ a+
2 } ∪ {a−1 ≤ u1 ≤ u∗ − δ, u2 = u∗}, then (Nδ, N−δ )

27This follows for example from an explicit calculation of the solution for the linearized
problem.

28The flow is not well-defined on the boundary of DE,3, but we can choose a slightly smaller
isolating neighborhood inside DE,3 with the same Conley index (alternatively we can use the

Morse index for C1-functions (see also Section 2.3)).
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is an index pair for Inv(Nδ), and CH∗(Inv(Nδ)) = H∗(Nδ, N−δ ). Consequently
CH1(Inv(Nδ)) ' Z and CHk(Inv(Nδ)) = 0 for k 6= 1. The fact that the homo-
logical Conley index is non-trivial for k = 1 and because (8) is a gradient flow we
conclude that there exists at least one critical point of W2 in Nδ with large Morse
index equal to 1.

With regard to the relative position of the extrema of W2 we note the following.
Let (bi, ci) be the maximum in D+

E,i for i = 1, 2. Since ∇W2(bi, ci) = 0 it follows
from Lemma 5 part (2) that ∂1W2(b1, u2) > 0 for all u2 > c1 and ∂2W2(u1, c2) < 0
for all u1 < b2. Therefore, we may as well use D̃+

E,3 = {b1 ≤ u1 ≤ u∗, u∗ ≤ u2 ≤
c2} \ (u∗, u∗) instead of D+

E,3. We then obtain a saddle point (b3, c3) ∈ D̃+
E,3 with

b1 < b3 < b2 and c1 < c3 < c2.
In terms of closed characteristics for a Lagrangian system the above lemma yields

Theorem 16. Let πuNE contain a concatenation I#
E of two compact intervals I1

E

and I2
E, and assume that (L, dt) is a Twist system on I#

E . If u∗ ∈ I1
E ∩ I2

E is of
saddle-focus type, then there exist at least 3 geometrically distinct closed character-
istics.

An analogue of the above theorem can also be proved for concatenations of more
than two interval components. We leave this to the interested reader.

3.4. Non-compact interval components. As already indicated in the previous
sections the theory developed in this paper is applicable to various model equations
that we know from physics, such as the eFK/Swift-Hohenberg type equations, 5th
order KdV equations, suspension bridge model, etc. (see Section 2.2). In this section
we will take a closer look at the class of eFK/Swift-Hohenberg type equations.
This family of equations is given by a Lagrangian of the form: L(u, u′, u′′) =
1
2 |u′′|2 + α

2 |u′|2 +F (u), where F is the potential, which is an arbitrary C2-function
of u. We have already proved that such Lagrangian systems are always Twist
systems if α ≤ 0 (and we believe the same to be true also for α > 0 (Twist property
on interval components)). The results obtained in this paper prove that for any
energy level E for which the set {u | F (u) + E ≥ 0} contains a compact interval
component IE , there exist a simple closed characteristic u(t) ∈ int(IE). Let us by
means of example consider a double equal-well potential F (like 1

4 (u2 − 1)2) with
minu F (u) = 0. In this case the set {u | F (u) + E ≥ 0} always contains non-
compact interval components. Without further geometric knowledge of the energy
manifold ME a general topological result proving existence of closed characteristics
does not seem likely. Therefore we will consider a specific example here. Consider
the energy level E = 0, then I0

def= πuN0 = R, and I0 is a concatenation of three
interval components. The Lagrangian system with α ≤ 0 is a Twist system on I0
and therefore S is well-defined on R2. One way to deal with this non-compact case
is to compactify the system (see [14]). This however requires detailed information
about the asymptotic behavior of F . There is a weaker assumption that one can
use in order to restrict the analysis of W2 to a compact subset of D+

E . This boils
down to the following geometric property:
(D) There exists a pair (u∗1, u

∗
2) ∈ D+

E (with |u∗1| and |u∗2| large) such that u′′′a,b(0) <
0 and u′′′a,b(τ) < 0 for the unique minimizers ua = u(t;u∗1, u

∗
2) and ub =

u(t;u∗2, u
∗
1) of (6)29.

29Notice that ua(t) = u∗2 − ub(τ − t) if L(u, v, w) is symmetric in v.
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Figure 5. The triangle D+
E = I∗E × I∗E ∩ {u2 > u1} for the case

of a double-well potential. The arrows denote (schematically) the
direction of the gradient ∇W2. Clearly W2 has at least one maxi-
mum and one minimum. Additionally, when the equilibrium points
are saddle-foci then W2 has two saddle points.

If (L, dt) satisfies Hypothesis (D) on a (non-compact) interval component IE , then
the system is said to be dissipative on I∗E = [u∗1, u

∗
2].

Lemma 17. If a Lagrangian system is dissipative on I∗E , then it holds that
∂1W2(u∗1, u2) < 0 for all u2 ∈ (u∗1, u

∗
2] and ∂2W2(u1, u

∗
2) > 0 for all u1 ∈ [u∗1, u

∗
2).

Proof. It follows from (D) that ∂1W2(u∗1, u∗2) < 0. Lemma 5 part (2) implies that
∂1W2(u∗1, u2) is increasing as a function of u2. It easily follows that ∂1W2(u∗1, u2) <
0 for all u2 ≤ u∗2. The other assertion is proved in exactly the same way.

For many nonlinearities F (u) it can be proved that the eFK/Swift-Hohenberg
system is dissipative on some interval I∗E = [u∗1, u

∗
2] with u∗1 < −1 and u∗2 >

+1 30. Notice that S need not have any critical points, for example for E � 0
(see [14]). For E = 0 there are two equilibrium points which will force S to have
critical points.

Lemma 18. If the Swift-Hohenberg Lagrangian is dissipative on I∗0 (with {±1}
∈ I∗0 ), then it has at least two geometrically distinct simple closed characteristics
(large and small amplitude). Moreover, if u = ±1 are both saddle-foci then there
exist two more geometrically distinct simple closed characteristics.

Proof. We consider the function W2 on I∗E × I∗E and as before we define D+
E =

I∗E × I∗E ∩ {u2 > u1} (see also Figure 5). Define A1 = {−1 < u1 < u2 < 1}
and A2 = D+

E ∩ {u1 < −1, u2 > 1}. As in the proof of Lemma 11 we have that
∂1W2(±1, u2) > 0 and ∂2W2(u1,±1) < 0. We now see from Lemma 17 that the

30For example, when F (u) ∼ |u|n as |u| → ∞ for some n > 2 then this follows from a scaling
argument. After scaling the Euler-Lagrange equation tends to u′′′′ = −|u|un−2. For this equation
it is easy to see that u(0) = u1 < 0, u′′′(0) = 0 implies that u(τ) = u2 > 0 and u′′′(τ) < 0. A
perturbation argument then shows that (D) is satisfied for the original equation for some (u∗1 , u

∗
2)

with −u∗1 and u∗2 large.
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gradient of W2 points outwards on ∂A2 and inwards on ∂A1. Hence, on A1 the
function W2 attains a maximum and on A2 the function W2 attains a minimum
(index 2 and index 0 points respectively), which proves the first part of the lemma.

As for the second part we argue as in the proof of Lemma 13. Since u = ±1 are
saddle-foci one finds index 1 saddle points in both A3 = D+

E∩{−1 < u1 < 1, u2 > 1}
and A4 = D+

E ∩ {u1 < −1,−1 < u2 < 1}.

Concerning the relative position of the extrema of W2, the same reasoning as at
the end of Section 3.3 can be followed. Denoting by (bi, ci) the extremum in Ai (for
i = 1, 2, 3, 4) we find that b2 < b4 < b1 < b3 and c4 < c1 < c3 < c2.

The result proved above has already been found in [24, 31] for the special case
F (u) = 1

4 (u2 − 1)2 without information about the index of the solutions. Many
more examples can be considered with non-compact interval components. A rather
tricky system is the suspension bridge model (see Section 2.2.2). The Lagrangian
is given by L(u, u′, u′′) = 1

2 |u′′|2 −
c2

2 |u′|2 + F (u), where F (u) = eu − u − 1. This
nonlinearity is especially hard to deal with when trying to compactify D+

E . In this
context it is interesting to note that there is no a priori L∞ bound on the set
of bounded solutions (see [30]) as opposed to nonlinearities with super-quadratic
growth. From the analysis in [30] it follows that there exists a point (u∗1, u

∗
2) ∈ D+

E

such that ∂1S(u∗1, u
∗
2) > 0, ∂2S(u∗1, u

∗
2) > 0, and ∂1S(u∗1, u2) > 0 for all u2 > 0.

This is a different dissipativity condition. Upon examining W2 (for E = 0) on
I∗E × I∗E we find at least one index 1 simple closed characteristic for the suspension
bridge problem (this was already proved in [30], without information on the Morse
index). In order for the argument to work the equilibrium point 0 has to be a
saddle-focus. Moreover, for the dissipativity condition to be satisfied the coefficient
in front of the second term in the Lagrangian has to be strictly positive. In [30]
more complicated closed characteristics are also found. This will be the subject of
further study.

4. Concluding remarks

4.1. Numerical evidence for the Twist property. In Lemma 9 we prove the
Twist property for a class of Lagrangians including the well-known Swift-Hohenberg
Lagrangian. Numerical evidence suggests that the Twist property holds for a large
class of other Lagrangians as well. As an example we depict in Figure 6 solutions of
the eFK equation (i.e., the eFK Lagrangian with F (u) = 1

4 (u2−1)2). For α ≤ 0 the
Twist property is always satisfied by Lemma 9. Numerical evidence suggests that
the Twist property is satisfied for all E > 0 and all α ∈ R (with IE = R). At the
singular energy level E = 0 there are (for α > 0) two different cases, namely where
the equilibrium points are real saddles and saddle-foci. While the Twist property
certainly is not satisfied on the whole of R (it is satisfied on the interval component
[−1, 1]) for the real saddle case, we conjecture that the Twist property holds on R
as long as the equilibrium points are saddle-foci.

We also performed numerical calculations on the 5th order KdV equation (see
Section 2.2.3) and it seems that the same is true for this system. It is of course
impossible to make statements about the rich class of second order Lagrangians as
a whole, but the Twist property appears to hold for a large subclass.

4.2. Local behavior at equilibrium points. In Section 3.2 we indicated that
the critical points u∗ with ∂2

uL(u∗, 0, 0) > 0 can be categorized into three classes:
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Figure 6. For fixed u1 = −1.1 characteristics in the energy level
E = 0 of the eFK Lagrangian are shown (in the (u, u′)-plane). On
the left the equilibrium points u = ±1 are real saddles (α = 5).
Notice the different scales needed to obtain an overall picture of the
situation. The Twist property is only satisfied for u2 ∈ (u1,−1).
On the right the equilibrium points are saddle-foci (α = 1). In this
case the Twist property seemingly holds for all u2 > u1.

σ(u∗) = {±λ1,±λ2} (real saddle), σ(u∗) = {±a± bi} (saddle-focus), and σ(u∗) =
{±ai,±bi} (center). The fourth possibility, which occurs for equilibrium points with
∂2
uL(u∗, 0, 0) < 0, is σ(u∗) = {±λ,±ai} (saddle-center). Such points do however

not occur as boundary points of interval components and one may ask how they fit
in.

Consider a compact interval component IE , then L(u, 0, 0) + E > 0 for all u ∈
int(IE) and ∂uL|∂IE ≥ 0 (if ∂uL = 0 at a boundary point then necessarily ∂2

uL > 0).
There exists a point u∗ ∈ int(IE) such that ∂uL(u∗, 0, 0) = 0 and ∂2

uL(u∗, 0, 0) < 0.
As a matter of fact there may be many minima and maxima. Now let E decrease
until the next singular level is reached. If the extremum in this level is a minimum
then IE splits into two components, and if this extremum is a maximum then IE
simply shrinks to the point u∗. Conversely, if u∗ is a saddle-center equilibrium
point at energy level E∗, then there exists an ε > 0 such that πuNE∗+ε contains a
compact interval component IE∗+ε which shrinks to u∗ as ε→ 0.

The local theory for saddle-centers reveals the existence of a family of closed
characteristics on IE∗+ε parametrized by ε (Lyapunov Center Theorem). Our theory
not only provides the existence of closed characteristics for E∗ < E < E∗ + ε but
also guarantees the existence of closed characteristics for all E > E∗ as long as the
interval component IE containing u∗ remains compact. We should emphasize again
the resemblance with the classical mechanical system ∂L(u,u′)

∂u − d
dt
∂L(u,u′)
∂u′ = 0.

4.3. KAM theory. For the Lagrangian systems that we study in this paper one
may wonder whether such systems can be completely integrable. A Lagrangian
system (L, dt) is said to be completely integrable if the associated Hamiltonian
system (H,ω) is completely integrable. Many of the examples that we consider
such as the eFK/Swift-Hohenberg system with α ≤ 0 are far from being integrable.
An example of an integrable system is given by the Lagrangian L(u, u′, u′′) =
1
2 |u′′|2 + 1

4u
4 (see [14] for a proof). Integrability can also be addressed at the
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level of the Twist maps in the Lagrangian systems. Without going into too much
detail let us look at a specific example. Consider again the eFK/Swift-Hohenberg
family defined by the L(u, u′, u′′) = 1

2 |u′′|2 + α
2 |u′|2 + 1

4 (u2 − 1)2, α ≤ 0. Now
let E < 0 and consider the area-preserving map T on R2 as discussed in Section
3.3. It follows from the compactification results in [14] that R2\Br(0) contains only
invariant curves for the map T for r > 0 sufficiently large. Inside the ball Br(0) the
map T can be chaotic (depending on the nature of the equilibrium points). The
invariant curves in R2\Br(0) can be interpreted as the invariant tori/circles of an
integrable system, comparable to the conserved invariant tori in KAM theory. To
get a feel for integrability of the map T on compact interval components we can
look at the quadratic Lagrangian L(u, u′, u′′) = 1

2 |u′′|2−
1
2u

2. We will leave this to
the interested reader.

The question of integrability versus non-integrability for second order Lagrangian
systems may be fairly complex. The results in [17, 18] and those proved in Section
3.3 seem to suggest that equilibrium points of saddle-focus and center type in
combination with geometric and topological conditions on the system create regions
of non-integrability. With the techniques presented in this paper and the methods
in [12, 13] we are trying to understand some of the dynamics of the system in this
case. These questions will be subject of future study.

Appendix A. Classification of equilibrium points

The equilibrium solutions of the Euler-Lagrange equation,

∂L

∂u
− d

dt

∂L

∂u′
+
d2

dt2
∂L

∂u′′
= 0,(9)

are given by the relation ∂L
∂u (u∗, 0, 0) = 0. The sign of ∂2L

∂u2 (u∗, 0, 0) divides the
behaviors of the equilibrium points into two groups. We will not consider the case
∂2L
∂u2 (u∗, 0, 0) = 0 which requires information on higher order derivatives. Equilib-
rium points for which ∂2L

∂u2 (u∗, 0, 0) 6= 0 are usually called non-degenerate. In order
to study the local structure of singular points we need to consider the second vari-
ation of J [u] around an equilibrium solution u(t) ≡ u∗. This yields the following
linear differential equation for the variations ϕ:

∂2L

∂u2
ϕ+

(
2
∂2L

∂u∂u′′
− ∂2L

∂u′2

)
ϕ′′ +

∂2L

∂u′′2
ϕ′′′′ = 0,(10)

where all partial derivatives of L are evaluated at (u, u′, u′′) = (u∗, 0, 0). The
characteristic equation is given by ∂2

uL+
(
2∂2
uu′′L− ∂2

u′L
)
λ2 +

(
∂2
u′′L

)
λ4 = 0. For

non-degenerate equilibrium solutions the following classification holds:

Lemma 19. Let u(t) ≡ u∗ be an equilibrium solution.
(i) If ∂2

uL < 0, then σ(u∗) = {±λ,±ai} (saddle-center).
(ii) If ∂2

uL > 0, then σ(u∗) = {±λ1,±λ2}, σ(u∗) = {±ai,±bi}, or σ(u∗) =
{±a ± bi} (real saddle, center, and saddle-focus respectively) depending on
∂2
uu′′L and ∂2

u′L.
Here a, b, λ, λ1, λ2 > 0.

Proof. From the characteristic equation we derive

λ2
± =

−
(
2∂2
uu′′L− ∂2

u′L
)
±
√
D

2∂2
u′′L

,
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where D =
(
2∂2
uu′′L − ∂2

u′L
)2 − 4

(
∂2
u′′L

)(
∂2
uL
)
. Clearly if ∂2

uL < 0, then
√
D >

|2∂2
uu′′L − ∂2

u′L| and thus λ2
− < 0 and λ2

+ > 0. This forces the spectrum to be
{±λ,±ai}. If ∂2

uL > 0, then
√
|D| < |2∂2

uu′′L− ∂2
u′L| and there are 3 possibilities:

1. D > 0, then
√
D < |2∂2

uu′′L−∂2
u′L| and λ2

± are both positive or negative. This
depends on ∂2

uu′′L and ∂2
u′L. If both eigenvalues are negative the spectrum

is given by {±ai,±bi}, and if both eigenvalues are positive the spectrum is
{±λ1,±λ2}.

2. D = 0, then the same possibilities as in the previous case hold, with the
additional property that the eigenvalues all have multiplicity two.

3. D < 0, then λ2
± ∈ C\R and therefore the spectrum is {±a± bi}.

As indicated before we do not study the case ∂2
uL = 0. In order to analyze

degenerate equilibrium solutions a normal form analysis is required. An example of
such type of analysis for a non-linear saddle-focus can be found in [14]. The results
proved in [14] for non-linear saddle-foci would suffice for the purposes of this paper.

Appendix B. The proof of Lemma 9

Stationary functions of the action functional JE [u], with L(u, u′, u′′) = 1
2 |u′′|2 +

K(u, u′), satisfy the equation

u′′′′ − d

dt

∂K

∂u′
+
∂K

∂u
= 0.(11)

Solutions of (11) satisfy the Hamiltonian relation−u′u′′′+ 1
2 |u′′|2+ ∂K

∂u′ u
′−K(u, u′)−

E = 0. For an increasing lap from u1 to u2 the derivative u′ can be represented
as a function of u. Set z(u) = u′

√
u′ (see for example [5, 28] where similar trans-

formations are used). Using the Hamiltonian relation we find that z satisfies the

equation z′′ = g(u, z), z > 0, z(u1) = z(u2) = 0, where g(u, z) = 3
2

∂K
∂u′ u

′−K(u,u′)−E
z5/3 .

The same holds for decreasing laps (z < 0). If

∂K

∂u′
u′ −K(u, u′)− E ≤ 0, and

∂2K

∂u′2
u′

2− 5
2
(∂K
∂u′

u′ −K(u, u′)− E
)
≥ 0,

for all u ∈ IE , and z ≥ 0 (condition (a) and (b) in Lemma 9), then g(u, z) ≤ 0, and
∂g
∂z (u, z) ≥ 0 respectively.

It follows from results in [11] that the boundary value problem for the z-equation
has a unique strictly concave positive solution. Consequently the u-laps from u1 to
u2 are unique, and we thus obtain a family u(t;u1, u2). These functions are global
minimizers of JE31. From the smooth dependence of the initial value problem
of (11) we deduce that these functions depend continuously on λ = (u1, u2) ∈ Λ def=
IE × IE\∆, and that the time τ(u1, u2) it takes for u to (monotonically) go from
u1 to u2 depends continuously on u1 and u2 as well32 and τ(u1, u2) < ∞ for all
(u1, u2) ∈ Λ33.

The remainder of this proof will be concerned with showing that u(t;λ) varies
smoothly with respect to λ for all λ ∈ int(Λ) that are away from possible equilibrium

31In z-variables we have JE =
∫ u2
u1

(
2
9
z′2 + K(u,z2/3)+E

z2/3

)
du. The condition ∂g

∂z
≥ 0 implies

that this functional is convex.
32Away from equilibrium points this is obvious. At equilibrium points this follows either by

taking limits and using the uniqueness, or from the local analysis performed in [29, Lemma 5.8].
33It follows from g ≤ 0 and the analysis in Appendix A that equilibrium points (which are

non-degenerate by assumption) can only be of saddle-focus or center type.
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points. Rescale the u-variable as s = u−u1
u2−u1

and set y(s) = z(u). From the z-
equation we obtain the following equation for y:

y′′ = g̃(s, y;λ), y(0) = y(1) = 0, y > 0 on (0, 1).

Moreover g̃ ≤ 0 and ∂g̃
∂y ≥ 0, and we can write g̃(s, u;λ) = h(s,y;λ)

y5/3 with h(s, y;λ) a
continuous function.

In order to obtain smooth dependence on the parameter λ we first consider the
following equation: y′′ε = g̃(s, yε;λ), yε(0) = yε(1) = ε and yε > ε on (0, 1). It
follows from the maximum principle that 0 < yε − y0 ≤ ε. For the yε-problem
it is not difficult to show that yε(·;λ) depends smoothly on λ. To prove this we
consider the map F (yε, λ) = y′′ε − g(s, yε;λ), where F maps from Xε × Λ (with
Xε = ε + H1

0 (0, 1)) to H−1(0, 1), and F ∈ C1(Xε × Λ, H−1). From the Implicit
Function Theorem we derive that

d

dλ
yε(·;λ) = −

(
Fy(yε, λ)

)−1
Fλ(yε, λ) ∈ C(Λ, Xε).

Our goal now is to derive a similar expression for d
dλy0(·;λ). We cannot apply the

Implicit Function Theorem to y0 directly because of the singularity of g̃ at y = 0.
We define Φε(λ) def= Fy(yε(·;λ), λ) = d2

ds2 −
∂g
∂y (s, yε;λ) = d2

ds2 −
k(s,yε;λ)

y
8/3
ε

, where k is
a continuous function. For λ ∈ Λ away from the equilibrium points the asymptotic
behavior of y0 at s = 0, 1 is y0(s) = O(s3/4) as s ↓ 0 and y0(s) = O((1 − s)3/4) as
s ↑ 1. We now conclude from Hardy’s inequality that Φ0(λ) ∈ B(H1

0 , H
−1) for all

λ ∈ Λ.
It holds that Φε(λ) −→ Φ0(λ) in B(H1

0 , H
−1) as ε → 0, and the same holds for

the inverses in B(H−1, H1
0 ) since Φε(λ) is uniformly bounded in ε. We obtain that

(writing kε = k(·, yε;λ))

‖Φε(λ) − Φ0(λ)‖ ≤ C‖kε
(y0

yε

)8
3 − k0‖L2 .

From the L∞-convergence of yε to y0 we then conclude that Φε(λ) → Φ0(λ) as
ε→ 0. In order to obtain the above inequality we again used Hardy’s inequality in
combination with the asymptotic behavior of y0 at s = 0, 134.

We now assert that Fλ(yε, λ) −→ Fλ(y0, λ) in H−1 as ε→ 0. We find that

‖Fλ(yε, λ)− Fλ(y0, λ)‖H−1 ≤ C‖∂hε
∂λ

(y0

yε

) 5
3 − ∂h0

∂λ
‖L2 .

As before, due to the L∞-convergence of yε to y0 the assertion follows.
We conclude that d

dλyε(·;λ) converges to
(
Fy(y0, λ)

)−1
Fλ(y0, λ) def= ζλ. The

next step is to consider the difference quotient Dhy(·;λ) = y(·;λ+h)−y(·;λ)
h . We

have that Dhyε → Dhy0 in L∞ as ε → 0, and Dhyε → d
dλyε(·;λ) as h → 0 for

ε > 0. Combining these facts we obtain ‖ζλ − Dhy0‖L∞ ≤ ‖ζλ − d
dλyε(·;λ)‖L∞ +

‖ ddλyε(·;λ)−Dhyε‖L∞ + ‖Dhyε −Dhy0‖L∞ → 0 as ε, h→ 0. This gives

d

dλ
y0(·;λ) = −

(
Fy(y0, λ)

)−1
Fλ(y0, λ) ∈ H1

0 (0, 1), ∀λ ∈ int(Λ).

Finally, an estimate similar to the ones above shows that d
dλy0(·;λ) depends

continuously on λ for all λ ∈ int(Λ) that are away from equilibrium points. It then

34If k has a zero at s = 0 or s = 1 the asymptotic behavior of y0 will be different (i.e. y0 = O(s)
near s = 0). In this case a slightly different inequality holds which proves the same statement.
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follows from the differential equation that y′0(s;λ) and y′′0 (s;λ) are C1-functions of
λ for all s ∈ (0, 1), i.e., y0(·;λ) is continuously differentiable as a C2-function on
any compact subset of (0, 1). This implies that u(·;λ) is continuously differentiable
as a C3-function (at least away from its extrema). Finally, a simple application of
the Implicit Function Theorem shows that τ(λ) is continuously differentiable for all
λ ∈ int(Λ) that are away from equilibrium points.
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