Extremal problems for quasiconformal maps of punctured plane domains
HTML articles powered by AMS MathViewer
- by Vladimir Marković
- Trans. Amer. Math. Soc. 354 (2002), 1631-1650
- DOI: https://doi.org/10.1090/S0002-9947-01-02919-1
- Published electronically: November 19, 2001
- PDF | Request permission
Abstract:
The main goal of this paper is to give an affirmative answer to the long-standing conjecture which asserts that the affine map is a uniquely extremal quasiconformal map in the Teichmüller space of the complex plane punctured at the integer lattice points. In addition we derive a corollary related to the geometry of the corresponding Teichmüller space. Besides that we consider the classical dual extremal problem which naturally arises in the tangent space of the Teichmüller space. In particular we prove the uniqueness of Hahn-Banach extension of the associated linear functional given on the Bergman space of the integer lattice domain. Several useful estimates related to the local and global properties of integrable meromorphic functions and the delta functional (see the definition below) are also obtained. These estimates are intended to study the behavior of integrable functions near singularities and they are valid in general settings.References
- Glen D. Anderson, Mavina K. Vamanamurthy, and Matti K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD); A Wiley-Interscience Publication. MR 1462077
- Lipman Bers and H. L. Royden, Holomorphic families of injections, Acta Math. 157 (1986), no. 3-4, 259–286. MR 857675, DOI 10.1007/BF02392595
- V. Božin, N. Lakic, V. Marković, and M. Mateljević, Unique extremality, J. Anal. Math. 75 (1998), 299–338. MR 1655836, DOI 10.1007/BF02788704
- V. Bozin, V. Marković, and M. Mateljevic, Unique extremality in the tangent space of the universal Teichmuller space, Integral Transform. Spec. Funct. 6 (1998), no. 1-4, 145–149. Generalized functions—linear and nonlinear problems (Novi Sad, 1996). MR 1640504, DOI 10.1080/10652469808819158
- C. J. Earle, I. Kra, and S. L. Krushkal′, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), no. 2, 927–948. MR 1214783, DOI 10.1090/S0002-9947-1994-1214783-6
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- S. L.Krushkal. Extremal quasiconformal mappings. Sibirsk. Mat. Zh. 10, (1969), 573-583.
- Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960, DOI 10.1007/978-1-4612-4752-4
- V.Marković. Uniquely extremal quasiconformal mappings and stationary points of the energy integral. Ph.D. Thesis, University of Belgrade (1998).
- M. Mateljević and V. Marković, The unique extremal QC mapping and uniqueness of Hahn-Banach extensions, Mat. Vesnik 48 (1996), no. 3-4, 107–112. MR 1454535
- M.Mateljević. The unique extremality 2. To appear in the Proceedings of Rumanian-Finish International conference (1999).
- Curt McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989), no. 1, 95–127. MR 999314, DOI 10.1007/BF01850656
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- Edgar Reich, Uniqueness of Hahn-Banach extensions from certain spaces of analytic functions, Math. Z. 167 (1979), no. 1, 81–89. MR 532887, DOI 10.1007/BF01215245
- Edgar Reich, On criteria for unique extremality of Teichmüller mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 2, 289–301 (1982). MR 658931, DOI 10.5186/aasfm.1981.0617
- Edgar Reich, The unique extremality counterexample, J. Anal. Math. 75 (1998), 339–347. MR 1655837, DOI 10.1007/BF02788705
- E.Reich. Extremal problems in the unit disc. Preprint (1998).
- Edgar Reich and Kurt Strebel, Quasiconformal mappings of the punctured plane, Complex analysis—fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981) Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 182–212. MR 738093, DOI 10.1007/BFb0066529
- Kurt Strebel, On lifts of extremal quasiconformal mappings, J. Analyse Math. 31 (1977), 191–203. MR 585316, DOI 10.1007/BF02813303
- Kurt Strebel, Extremal quasiconformal mappings, Results Math. 10 (1986), no. 1-2, 168–210. MR 869809, DOI 10.1007/BF03322374
- Kurt Strebel, On the extremality and unique extremality of certain Teichmüller mappings, Complex analysis, Birkhäuser, Basel, 1988, pp. 225–238. MR 981417
Bibliographic Information
- Vladimir Marković
- Affiliation: Institute of Mathematics, University of Warwick, Coventry, CV4 7AL, UK
- Email: markovic@maths.warwick.ac.uk
- Received by editor(s): March 23, 2000
- Published electronically: November 19, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1631-1650
- MSC (1991): Primary 41A65, 30C75
- DOI: https://doi.org/10.1090/S0002-9947-01-02919-1
- MathSciNet review: 1873021