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CONVERGENCE OF TWO-DIMENSIONAL
WEIGHTED INTEGRALS

MALABIKA PRAMANIK

Abstract. A two-dimensional weighted integral in R2 is proposed as a tool
for analyzing higher-dimensional unweighted integrals, and a necessary and
sufficient condition for the finiteness of the weighted integral is obtained.

1. Introduction

In this paper, we consider weighted integrals in R2 of the form∫
B

|g(x, y)|ε

|f(x, y)|δ
dy dx,(1.1)

where f and g are real-analytic (possibly complex-valued) functions on R2, ε, δ are
positive numbers and B is a small ball centered at the origin. The goal of the paper
is to answer the question of finiteness for the above integral.

A simpler version of the above problem has a rich history in the literature, where
it arises in connection with the growth rate of real analytic functions and decay
rate of oscillatory integrals. In particular, for g ≡ 1 and in dimension n = 2, the
problem of finiteness of the integral in (1.1) has been fully treated by Phong, Stein
and Sturm [2], while the related problem of determining the oscillation index of a
two-dimensional oscillatory integral dates back to Varchenko [5]. It would be of
considerable interest, however, to tackle the issue in higher dimensions (i.e. n > 3),
where the problem of convergence of the unweighted integral (g ≡ 1) is still poorly
understood and finiteness results are, at best, partial (see [5]).

Weighted integrals of the form (1.1) sometimes arise from their unweighted higher
dimensional analogues after a suitable change of coordinates, especially if the higher
dimensional f comes equipped with certain symmetries that can be exploited to
reduce the dimension. A case in point is the important counterexample to Arnold’s
problem given by Varchenko in the context of oscillatory integrals in R3 (see section
5 of [5]). In our situation, Varchenko’s example translates to∫∫∫

B3⊂R3

dx1 dx2 dx3∣∣∣(λx2
1 + x4

1 + x2
2 + x2

3)2 + x4p
1 + x4p

2 + x4p
3

∣∣∣δ ,(1.2)

where λ is a real parameter and p is a sufficiently large natural number. Now, a few
trivial size estimates coupled with a cylindrical change of coordinates transforms
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the above three-dimensional unweighted integral to a two-dimensional weighted one,
given by ∫∫

B2⊂R2

|y| dy dx
|(y2 + x4 + λx2)2 + x4p + y4p|δ

.(1.3)

Clearly, the integral in (1.2) converges if and only if the integral in (1.3) does. In
general, the hope is that results for integrals of the form (1.1) would shed some
light on the behavior of the higher-dimensional unweighted ones they arise from.

Another problem closely related to the unweighted integrals is the one of ob-
taining L2 bounds for oscillatory integral operators with degenerate real-analytic
phase. The case for n = 2 has been addressed by Phong and Stein in [1]. In section
3, the techniques used in their paper are adapted to settle the problem of local
integrability of |g|ε/|f |δ.

The problem of finiteness of the integral in (1.1) also gives rise to several related
problems, some of which in turn translate to results for unweighted integrals in
higher dimensions. A few questions which arise naturally in this context are:

(a) When is the ratio |g|ε/|f |δ an Ap weight in B?
(b) How does the integral in (1.1) behave under perturbations of f if g is held

fixed?
We shall return to these questions in subsequent papers.

2. Notation, Definitions and Preliminary Observations

Let f and g be real-analytic functions in a neighborhood of the origin in R2 such
that f(0) = g(0) = 0, f, g 6≡ 0. Suppose the Taylor series expansions of f and g are
given by

f(x, y) =
∞∑

p,q=0
(p,q) 6=(0,0)

cpqx
pyq, g(x, y) =

∞∑
p,q=0

(p,q) 6=(0,0)

c̃pqx
pyq.

The Newton polyhedron of f(x, y) (respectively g(x, y)) at the origin is defined to
be the convex hull of the union of all the north-east quadrants in R2

>0 with corners
at the points (p, q) satisfying cpq 6= 0 (respectively c̃pq 6= 0). The boundary of the
Newton polyhedron is called the Newton diagram.

There is an alternative description of the Newton diagram which is sometimes
more useful for analytical purposes. In view of the Weierstrass Preparation The-
orem, f can be expressed, after a non-singular change of coordinates and up to a
non-vanishing factor which we ignore, as a polynomial in y with coefficients analytic
in x. Factoring out this polynomial, we write f as

f(x, y) = xα̃1yβ̃1
∏

ν ; ν∈If

(y − rν (x)) ,

where α̃1 and β̃1 are non-negative integers and the rν (x)’s are the non-trivial zeros
of the above-mentioned polynomial in y. Here, ν ranges over an index set If that is
in one-to-one correspondence with the set of roots of f . In order to avoid confusion
with subscripts later on, it is better to think of ν not as a positive integer but as
the unique element of If associated to the root rν . In a small neighborhood of 0,
the rν ’s may be expressed as fractional power series, the so-called Puiseux series in
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x, of the following form:

rν (x) = cνx
aν + O

(
xbν
)
,

where bν > aν > 0 are rational numbers and cν 6= 0. In fact, each rν(x) is an
analytic function in z, where z = x1/M for some positive integer M . A detailed
discussion of the theory of existence and convergence of Puiseux series may be
obtained in Siegel [4, pp. 90 - 98] and in Saks and Zygmund [3, pp. 268 - 271]. For
a more concise treatment, see section 3 of [1].

We may also write, using similar arguments,

g(x, y) = xα̃2yβ̃2
∏

µ ;µ∈Ig

(y − sµ (x)) ,

where the sµ’s are the roots of g, and the leading exponent of sµ is denoted by aµ .
We order the combined set of distinct exponents aν and aµ into one increasing list
of exponents al,

0 < a1 < a2 < · · · < aN ,

and define

ml := #{ν : rν (x) = cνx
al + · · · , for some cν 6= 0}.

We call ml the generalized multiplicity of f corresponding to the exponent al. The
generalized multiplicity of g corresponding to al will be denoted by nl. If al does
not occur as a leading exponent of any root of f (respectively g), then we set ml = 0
(respectively nl = 0).

Now, it can be shown (for a proof see observation 1 in section 5 (b) of [1]) that
the Newton diagram of f has vertices at the points (Al, Bl), where

Al = α̃1 + a1m1 + a2m2 + · · ·+ alml, Bl = β̃1 +ml+1 + · · ·+mN ,

Cl = α̃2 + a1n1 + a2n2 + · · ·+ alnl, Dl = β̃2 + nl+1 + · · ·+ nN .

It follows that the leading exponents al of the roots of f (or g) can be read off from
their respective Newton diagrams, together with their generalized multiplicities
ml. In fact, the boundary segment joining the vertices (Al−1, Bl−1) and (Al, Bl)
has slope −1

al
and vertical drop ml.

Next, we introduce the following notation. If Ll is a line of slope −1
al

that occurs
in the Newton diagram of either f or g, then we denote the point of intersection of
Ll with the bisectrix p = q by{(

δl
−1, δl

−1
)

if Ll is a boundary line of the Newton diagram of f,(
δ̃−1
l , δ̃−1

l

)
if Ll is a boundary line of the Newton diagram of g.

The alternative description of the Newton diagram allows us to obtain an explicit
formula for δl−1 and δ̃−1

l in terms of al, Al, Bl, Cl and Dl:

δl =
1 + al

Al + alBl
, δ̃l =

1 + al
Cl + alDl

.(2.1)

The Newton distance of f , denoted by δ0(f), is defined as follows:

δ0(f) := min
l
δl.

The Newton distance plays an important role in problems involving the growth rate
of the distribution function of f , local integrability of |f |−δ and the decay rate of
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L2 norms of oscillatory integral operators with phase f . In particular, it is known
that |f |−δ is locally integrable in a neighborhood of the origin if δ < δ0(f) (after
possibly a certain analytic change of coordinates), while the exact decay rate of an
oscillatory integral operator on R with phase f(x, y) and smooth non-degenerate
cut-off χ(x, y) is given by δ0(fxy). In this paper, we shall obtain an analogue of
δ0(f) in the weighted situation.

We conclude our preliminary discussion with the following observations:
(1) First, we note that the quantities al,ml, nl, Al, Bl, Cl, Dl, δl, δ̃l are all coor-

dinate dependent.
(2) Second, we observe that the above discussion allows us to extend the notion

of Newton diagram to a certain class of functions strictly larger than the class of
real-analytic functions. Let f(and g) be of the form

∏
κ (y − tκ (x)) (where the tκ’s

are convergent Puiseux series in x, though not necessarily the roots of an analytic
function). Then the definitions of al,ml, etc. still make sense, with the possibility
that now the vertices (Al, Bl) may be fractional, instead of integer points. Let us
consider the set ⋃

l

{(x, y) ; x > Al, y > Bl}

and call the boundary of the convex hull of the above union set the generalized
Newton diagram of f . The geometric interpretation of

(
δl
−1, δl

−1
)

and
(
δ̃−1
l , δ̃−1

l

)
continues to hold, and we compute these objects using the same formulae as in
(2.1).

(3) Finally, we claim that although δl−1(respectively δ̃−1
l ) has been defined only

for those values of l which are “represented” in the Newton diagram of f (respec-
tively g), it is possible to define these quantities for all values of l, 1 6 l 6 N , using
the convention that ml = 0 (respectively nl = 0) for any l that is “omitted” in
f(respectively g). Geometrically, if ml = 0, one imagines a line segment of length
zero and of slope −1

al
in between the segments of slope −1

al−1
and −1

al+1
in the (general-

ized) Newton diagram of f , and defines
(
δl
−1, δl

−1
)

to be the point of intersection
of this “imaginary” line segment with the bisectrix p = q. The coordinates of the
point of intersection are still obtained from the expressions in (2.1).

The statement of our main theorem requires the following definition:
Let us consider a coordinate transformation ϕ given by

(x, y) 7→ (x, y − q(x)) or (x, y) 7→ (x− q(y), y),

where q is a convergent real-valued Puiseux series in a neighborhood of the origin.
We shall see in the proof of Theorem 1 that a change of coordinates of this type
transforms a real-analytic function to a function of the form∏

κ

(y − tκ(x)),

to which the notion of a generalized Newton diagram may be applied. We shall call
such a transformation ϕ “good” and denote the class of all good transformations
by C. For any ϕ ∈ C, we define the weighted Newton distance of f and g associated
to ϕ as follows:

δ0 (g, f, ε ;ϕ) := min
l

[
δl(ϕ)

(
1 +

ε

δ̃l(ϕ)

)]
,
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where the index l runs through the combined set of slopes of boundary lines of
the (generalized) Newton diagrams of f and g expressed in the coordinate system
ϕ. δl(ϕ) and δ̃l(ϕ) are the values of δl and δ̃l, respectively, computed in these
coordinates.

3. Statement and Proof of Main Theorem

We are now ready to state and prove the main theorem.

Theorem 1. Let f and g be real-analytic (complex-valued) functions in a neigh-
borhood of the origin in R2 with f(0) = g(0) = 0. Then, there exists a small
neighborhood V of the origin such that for every ε > 0 the following holds:∫

V

|g(x, y)|ε

|f(x, y)|δ
dy dx <∞

for any δ < δC0 (g, f, ε), and ∫
V

|g(x, y)|ε

|f(x, y)|δ
dy dx =∞

for any δ ≥ δC0 (g, f, ε), where

δC0 (g, f, ε) := min
ϕ∈C

δ0(g, f, ε ; ϕ).

In fact, there exists a finite subclass of C, denoted by C0, which depends on f and
g but is independent of ε, such that

δC0 (g, f, ε) = δC00 (g, f, ε) := min
ϕ∈C0

δ0(g, f, ε ; ϕ).

The class C0 contains, apart from the identity transformation, coordinate changes
of the form (x, y) 7→ (x, y − q(x)) and (x, y) 7→ (x − q(y), y) for certain Puiseux
series q (depending on f or g) with leading exponents greater than or equal to 1.

Remark. We shall henceforth call any ϕ ∈ C0 an admissible change of coordinates.
Our proof, in fact, provides an algorithm for computing all the admissible coordinate
changes and for selecting the optimal one. One also concludes from the theorem
that any ϕ ∈ C0, and in particular the “minimizing” transformation, can be at
worst C1+ε0 for some small ε0 > 0 depending on f and g.

Proof of Theorem 1. Let us for now assume that a1 > 1. This results in no loss
of generality in the proof that we are about to present, and we shall mention the
routine modifications for the general case at the end. Also without loss of generality,
we restrict ourselves to considering the integral only on the quadrant {x > 0, y > 0},
and inspect the integrand on the support of the cut-off functions χj(x)χk(y), where
χj(x) and χk(y) are the indicator functions of the sets

2−j−1 < x < 2−j+1 and 2−k−1 < y < 2−k+1

respectively. Here j and k may be taken to be large. We need to consider the
following ranges of j and k, depending on whether there is any cancellation between
y and xal :

k 6 a1j −K1; k > aN j +KN ;
alj +Kl 6 k 6 al+1j −Kl+1 for some l with 1 6 l 6 N − 1;

alj −Kl 6 k 6 alj +Kl for some l with 1 6 l 6 N.
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Here the Kl’s are large constants depending only on the exponents al and possibly
on the coefficients of the Puiseux series in the factorization of f and g. For con-
venience, we shall denote the first range by k � a1j, the second one by k � aNj,
the third category of ranges by alj � k � al+1j and the fourth by k ≈ alj. The
binary relation A ∼ B is used in the following sense:

A ∼ B iff
1
C1
B ≤ A ≤ C2B

for large constants C1 and C2 depending on f and g alone.

Case 1: k � a1j. In this case,

|f(x, y)| ∼ 2−k(β̃1+m1+m2+···+mN) = 2−kB0 , |g(x, y)| ∼ 2−kD0 .

Therefore, ∑
(k,j) ; k�a1j

∫ |g(x, y)|ε

|f(x, y)|δ
χj(x)χk(y) dy dx

∼
∑
k�a1j

2k(δB0−εD0)2−k2−j =
∑
k�a1j

2k(δB0−εD0−1)2−j

∼
∑
k

2k(δB0−εD0−1− 1
a1

),

which converges iff

δB0 − εD0 − 1− 1
a1

< 0,

i.e., iff

δ <
εD0 + 1 + 1

a1

B0
=
εa1D0 + a1 + 1

a1B0

=
εa1D0
a1+1 + 1
a1B0
a1+1

= δ1

(
1 +

ε

δ̃1

)
.

The case k � aNj is treated in a similar way.

Case 2: alj � k � al+1j. In this case,

|y − rν(x)| ∼
{

2−aνj if aν 6 al,
2−k if aν > al.

We then have the following size estimates:

|f(x, y)| ∼ 2−j(α̃1+a1m1+...+alml)2−k(β̃1+ml+1+...+mN )

∼ 2−Alj2−Blk.

Similarly,

|g(x, y)| ∼ 2−Clj2−Dlk.

Therefore, ∑
alj�k�al+1j

∫ |g(x, y)|ε

|f(x, y)|δ
χj(x)χk(y) dy dx

∼
∑

alj�k�al+1j

2j(δAl−εCl)2k(δBl−εDl)2−k2−j,
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where the sum is over both indices j and k. To facilitate the summation, let us
introduce the new dummy variable k̃ in place of k, defined as follows:

k = k̃ + alj, 0� k̃ � (al+1 − al)j.
Then the above expression reduces to∑

0�k̃�(al+1−al)j

2j(δAl−εCl−1)2(k̃+alj)(δBl−εDl−1)

=
∑

0�k̃�(al+1−al)j

2[δ(Al+alBl)−ε(Cl+alDl)−al−1]j × 2k̃(δBl−εDl−1),

which converges iff

(a) δ(Al + alBl)− ε(Cl + alDl)− (al + 1) < 0 when δBl − εDl − 1 < 0,

(b) δ(Al + alBl)− ε(Cl + alDl)− (al + 1) + (al+1 − al)(δBl − εDl − 1) < 0
when δBl − εDl − 1 > 0 ;

i.e. iff

(a) δ <
ε (Cl + alDl) + al + 1

Al + alBl
= δl

(
1 +

ε

δ̃l

)
, when δ <

εDl + 1
Bl

,

(b) δ <
ε (Cl + al+1Dl) + al+1 + 1

Al + al+1Bl
=
ε (Cl+1 + al+1Dl+1) + al+1 + 1

Al+1 + al+1Bl+1

= δl+1

(
1 +

ε

δ̃l+1

)
, when δ > εDl + 1

Bl
.

Now, a straightforward computation shows that the following conditions are equiv-
alent:

(i)
εDl + 1
Bl

<
ε (Cl + al+1Dl) + al+1 + 1

Al + al+1Bl
= δl+1

(
1 +

ε

δ̃l+1

)
;

(ii)
εDl + 1
Bl

<
ε (Cl + alDl) + al + 1

Al + alBl
= δl

(
1 +

ε

δ̃l

)
;

(iii)
ε (Cl + al+1Dl) + al+1 + 1

Al + al+1Bl
<
ε (Cl + alDl) + al + 1

Al + alBl
;

(iv)
ε (Cl + al+1Dl) + al+1 + 1

Al + al+1Bl
<
εCl + 1
Al

;

(v)
ε (Cl + alDl) + al + 1

Al + alBl
<
εCl + 1
Al

;

(vi)
εDl + 1
Bl

<
εCl + 1
Al

.

So, there are two possibilities:
εDl + 1
Bl

<
εCl + 1
Al

,(a)

in which case the necessary and sufficient conditions in (i) - (vi) lead to the string
of inequalities

εDl + 1
Bl

< δl+1

(
1 +

ε

δ̃l+1

)
< δl

(
1 +

ε

δ̃l

)
<
εCl + 1
Al

.
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Therefore the optimal δ satisfies

δ < δl+1

(
1 +

ε

δ̃l+1

)
.

The second possibility is
εDl + 1
Bl

> εCl + 1
Al

,(b)

in which case
εDl + 1
Bl

> δl+1

(
1 +

ε

δ̃l+1

)
> δl

(
1 +

ε

δ̃l

)
> εCl + 1

Al
,

and the optimal δ satisfies

δ < δl

(
1 +

ε

δ̃l

)
.

In either case, we have

δ < min
l

[
δl

(
1 +

ε

δ̃l

)]
,

where δl and δ̃l are computed based on f and g in the original set of coordinates,
i.e. under the identity transformation (x, y) 7→ (x, y).

Case 3: k ≈ alj. This range of j and k depicts the region “near” the cluster of
roots of f and g that has a common leading exponent al. For the sake of a more
organized notation to be made clear shortly, let us rename l = l1. We now fix a
real root q1 of the above cluster, such that

q1(x) = cα1
l1
xal1 + higher order terms ,

for some index α1 with cα1
l1
6= 0 (the case of complex-valued roots will be treated

shortly). Since q1 is real-valued for all x in its domain, cα1
l1
∈ R. Here, q1 could be

the Puiseux series of a root of f and/or g. For a real-analytic function h, which in
our case might be either f or g, we introduce the following notation:

Sl1(h) :=
{
q ; q is the Puiseux series corresponding to a root of h

with leading exponent al1
}
,

Sα1
l1

(h) :=
{
q ∈ Sl1(h) ; q has leading term cα1

l1
xal1

}
,

ml1(h) := number of roots in Sl1(h), counted with their multiplicities,

mα1
l1

(h) := number of roots in Sα1
l1

(h), counted with their multiplicities.

Then,

Sl1(h) =
⋃
α1

Sα1
l1

(h) and ml1(h) =
∑
α1

mα1
l1

(h).

For simplicity, we shall denote

mα1
l1

(f) = mα1
l1
, mα1

l1
(g) = nα1

l1
, Sl1(f) ∪ Sl1(g) = Sl1 .

Thus, for every q ∈ Sα1
l1

such that q 6≡ q1, there exist aα1
l1l2

> al1 and cα1α2
l1l2

6= 0
such that

q(x) − q1(x) = cα1α2
l1l2

xa
α1
l1l2 + higher order terms.
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We assume that the aα1
l1l2

’s have been arranged in increasing order of magnitude,
i.e.

al1 = al10 < aα1
l11 < aα1

l12 < · · · < aα1
l1l2

< aα1
l1(l2+1) < · · · <∞ .(3.1)

Define

Sα1
l1l2

(h; q1) := {q ∈ Sα1
l1

(h; q1); (q − q1) has leading exponent aα1
l1l2
}

and
mα1
l1l2

(h; q1) := number of roots in Sα1
l1l2

(h; q1), counted with their multiplicities.

As before, set

mα1
l1l2

(f) = mα1
l1l2

, mα1
l1l2

(g) = nα1
l1l2

, Sα1
l1l2

(f ; q1) ∪ Sα1
l1l2

(g; q1) = Sα1
l1l2

.

Then, ∑
l2>1

mα1
l1l2

(h; q1) = mα1
l1

(h; q1)−M1(h),

where M1(h) is the multiplicity of q1 as a root of h. In order to examine the integral
in a neighborhood of q1, we set

|y − q1(x)| ∼ 2−p, p > al1j.
Let us observe that this is equivalent to making the change of variables x 7→ x and
y 7→ y − q1(x). We denote this change of variables by ϕ. ϕ will be a member of
the class of admissible coordinates C0. Note that ϕ preserves the origin and has
Jacobian identically equal to 1. In the subsequent analysis, the role of k, as depicted
in cases 1 and 3, is taken over by p. For example, we shall now need to consider
the following ranges of p and j:

aα1
l1l2

j � p� aα1
l1(l2+1)j, p ≈ aα1

l1l2
j.

Subcase 1: aα1
l1l2

j � p� aα1
l1(l2+1)j. In this region, the factors of f and g satisfy

the following estimates:

|y − q(x)| = |(y − q1(x)) − (q(x) − q1(x))| ∼



2−al′1j , if q ∈ Sl′1 , l
′
1 < l1 ;

2−al1j , if q ∈ Sl′1 , l
′
1 > l1 ;

2−al1j , if q ∈ Sl1 \ Sα1
l1

;

2
−aα1

l1l
′
2
j
, if q ∈ Sα1

l1l′2
, l′2 6 l2;

2−p, if q ∈ Sα1
l1l′2

, l′2 > l2;

2−p, if q = q1.

Therefore,

|f(x, y)| ∼ 2−(Al1−1+al1Bl1)j2−al1(ml1−m
α1
l1

)j2−A
α1
l1l2

j2−pB
α1
l1l2 ,

where

Aα1
l1l2

=
∑
l′26l2

aα1
l1l′2

mα1
l1l′2

, Bα1
l1l2

=
∑
l′2>l2

mα1
l1l′2

;

i.e.

|f(x, y)| ∼ 2−(Al1−1+al1Bl1−1−al1m
α1
l1

+A
α1
l1l2

)j2−B
α1
l1l2

p,

|g(x, y)| ∼ 2−(Cl1−1+al1Dl1−1−al1n
α1
l1

+C
α1
l1l2

)j2−D
α1
l1l2

p.
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This implies that,∑
(j,k,p) ; k∼al1 j

a
α1
l1l2

j�p�aα1
l1(l2+1)j

∫ |g(x, y)|ε

|f(x, y)|δ
χj(x)χk(y)χp(y − q1(x)) dy dx

∼
∑

(j,k,p) ; k∼al1 j
a
α1
l1l2

j�p�aα1
l1(l2+1)j

2−(Cl1−1+al1Dl1−1−al1n
α1
l1

+C
α1
l1l2

)jε2−D
α1
l1l2

pε

2−(Al1−1+al1Bl1−1−al1m
α1
l1

+A
α1
l1l2

)jδ2−B
α1
l1l2

pδ
2−p2−j

∼
∑

(j,p) ;
a
α1
l1l2

j�p�aα1
l1(l2+1)j

2jδ(Al1−1+al1Bl1−1−al1m
α1
l1

+A
α1
l1l2

)

× 2−j[ε(Cl1−1+al1Dl1−1−al1n
α1
l1

+C
α1
l1l2

)+1]2p(B
α1
l1l2

δ−Dα1
l1l2
−1).

Just as before, we can show that the infinite series converges:

(a) for δBα1
l1l2
− εDα1

l1l2
− 1 6 0 iff

δ <
ε
(
Cl1−1 + al1Dl1−1 − al1nα1

l1
+ Cα1

l1l2
+ aα1

l1l2
Dα1
l1l2

)
+ aα1

l1l2
+ 1

Al1−1 + al1Bl1−1 − al1mα1
l1

+Aα1
l1l2

+ aα1
l1l2

Bα1
l1l2

:= ω(q1; l1, l2;α1);

(b) for δBα1
l1l2
− εDα1

l1l2
− 1 > 0 iff

δ <
ε
(
Cl1−1 + al1Dl1−1 − al1nα1

l1
+ Cα1

l1l2
+ aα1

l1l2
Dα1
l1(l2+1)

)
+ aα1

l1(l2+1) + 1

Al1−1 + al1Bl1−1 − al1mα1
l1

+Aα1
l1(l2+1) + aα1

l1(l2+1)B
α1
l1(l2+1)

:= ω(q1; l1, (l2 + 1);α1).

We observe that(
aα1
l1l2

+ 1
Al1−1 + al1Bl1−1 − al1mα1

l1
+Aα1

l1l2
+ aα1

l1l2
Bα1
l1l2

)−1

:=
(
δα1
l1l2

)−1

is the point of intersection of the bisectrix p = q with the face of the generalized
Newton diagram of the function f̃(x, y) = f ◦ ϕ(x, y) = f(x, y − q1(x)) that has
slope −1

a
α1
l1l2

. Denoting by (δ̃α1
l1l2

)−1 the corresponding quantity for g, we get

ω(q1; l1, l2;α1) = δα1
l1l2

(
1 +

ε

δ̃α1
l1l2

)
.

Now, using the same techniques as in case 2, we see that the optimal exponent δ
satisfies

δ < min
l
δl(ϕ)

(
1 +

ε

δ̃l(ϕ)

)
.

Subcase 2: p� aα1
l1L2

j, where L2 = max l2. This is the step that deals with the
region “close” to the root q1 and highlights the cancellation (if any) of the factor
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(y − q1(x)) between |g|ε and |f |δ. In this region, f and g satisfy the following size
estimates:

|f(x, y)| ∼ 2−(Al1−1+al1Bl1 )j2−al1(ml1−m
α1
l1

)j2−A
α1
l1L2

j2−pM1(f),

|g(x, y)| ∼ 2−(Cl1−1+al1Dl1)j2−al1(nl1−n
α1
l1

)j2−C
α1
l1L2

j2−pM1(g).

So routine computations yield∑
(j,k,p) ; k∼alj
p�aα1

l1L2
j

∫ |g(x, y)|ε

|f(x, y)|δ
χj(x)χk(y)χp(y − q1(x)) dy dx

∼
∑

(j,k,p) ; k∼alj
p�aα1

l1L2
j

2p(δM1(f)−εM1(g)−1)2jδ(Al1−1+al1Bl1−1−al1m
α1
l1

+A
α1
l1L2

)

× 2−j[ε(Cl1−1+al1Dl1−1−al1n
α1
l1

+C
α1
l1L2

)+1],

which converges iff

δ < min
(
εM1(g) + 1
M1(f)

, ω(q1; l1, L2;α1)
)
.

We observe that (εM1(g) + 1)/M1(f) is the value of ω corresponding to the hori-
zontal faces of the generalized Newton diagrams of f̃ and g̃.

Subcase 3: p ≈ aα1
l1l2

j. This range of indices depicts the region near the cluster
of roots Sα1

l1l2
. Let us fix a real root q2 in this cluster. Then,

q2(x) − q1(x) = cα1α2
l1l2

xa
α1
l1l2 + higher order terms

for some index α2 such that cα1α2
l1l2

6= 0.
Defining

Sα1α2
l1l2

(h; q1) := {q ∈ Sα1
l1l2

(h; q1); (q − q1)(x) = cα1α2
l1l2

xa
α1
l1l2 + higher order terms},

and setting

Sα1α2
l1l2

:= Sα1α2
l1l2

(f ; q1) ∪ Sα1α2
l1l2

(g; q1),

we see that this subcase is identical to case 3, except that we now view the original
cluster of roots under a finer resolution; namely, we consider only those roots which
have the same leading term as q1 and whose difference from q1 has a leading factor
of cα1α2

l1l2
xa

α1
l1l2 .

Thus, as before, we have that for any q ∈ Sα1α2
l1l2

such that q 6≡ q2, there exist
aα1α2
l1l2l3

> aα1
l1l2

and cα1α2α3
l1l2l3

6= 0 such that

(q − q2)(x) = cα1α2α3
l1l2l3

xa
α1α2
l1l2l3 + higher order terms.

Let us order

aα1
l1l2

< aα1α2
l1l21 < · · · < aα1α2

l1l2l3
< aα1α2

l1l2(l3+1) < · · · <∞.

Now, setting y − q2(x) ∼ 2−p2 , p2 > p (in other words, making the transformation
x 7→ x, y 7→ y − q2(x)), we may treat this subcase exactly as the parent case 3 by
further subdividing into cases depending on the range of p2, i.e.

aα1α2
l1l2l3

j � p2 � aα1α2
l1l2(l3+1)j and p2 ∼ aα1α2

l1l2l3
j.
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The second type of region gives rise to further subcases of its own (identical to the
ones already discussed but with an added degree of refinement in the cluster). In
general, one considers, following an inductive scheme, progressively finer clusters
given by

(3.2) Sα1α2...αs−1
l1l2...ls

:= Sα1α2...αs−1
l1l2...ls

(f ; q1, q2, · · · , qs−1) ∪ Sα1α2...αs−1
l1l2...ls

(g; q1, q2, · · · , qs−1)

and

Sα1α2...αs
l1l2...ls

:= Sα1α2...αs
l1l2...ls

(f ; q1, q2, · · · , qs−1) ∪ Sα1α2...αs
l1l2...ls

(g; q1, q2, · · · , qs−1),(3.3)

where the sets in (3.2) and (3.3) are defined recursively as follows.
Given Sα1···αs−1

l1···ls−1
(h; q1, · · · , qs−2), we set

Sα1α2···αs−1
l1l2···ls (h; q1, q2, . . . , qs−1) :=

{
q ∈ Sα1α2···αs−1

l1l2···ls−1
(h; q1, q2, · · · , qs−2);

(q − qs−1)(x) has leading exponent aα1α2···αs−1
l1l2···ls

}
and

Sα1α2···αs
l1l2···ls (h; q1, · · · , qs−1) := {q ∈ Sα1α2···αs−1

l1l2···ls (h; q1, · · · , qs−1);

(q − qs−1)(x) = cα1α2···αs
l1l2···ls xa

α1α2···αs−1
l1l2···ls + higher order terms, cα1α2···αs

l1l2···ls 6= 0}.

Here h = f or g, and qi is a fixed real root of the cluster Sα1α2···αi
l1l2···li , for 1 6 i 6 s−1.

One observes that

Sl1 ⊇ Sα1
l1
) Sα1

l1l2
⊇ Sα1α2

l1l2
) · · · ,

so the process terminates in a finite number of steps, when each of the final clusters
Sα1α2···αs
l1l2···ls consists of roots that are identical, i.e. when the degree of resolution is

high enough to distinguish between any two distinct roots.

Case 4: Complex roots. We shall now indicate how the above arguments are mod-
ified in the presence of complex roots. Let a factor of f or g be given by y− q0(x),
and let

q0(x) = cxal + higher powers.

Here l = l1 and c = cα1
l1

for some α1. There are two possibilities: c ∈ R and c /∈ R.
For c ∈ R,

|y − q0(x)| ∼ |y −<q0(x)| + |=q0(x)|
∼ |y −<q0(x)| + |x|bl1 for some bl1 > al1 .

Now, in the ranges k � al1j and k � al1j, the bounds for f and g from above and
below are unaffected by the presence of |x|bl1 , since there is no cancellation between
y and |x|al1 , and |x|al1 is much bigger than |x|bl1 . Thus we need only consider the
range k ∼ al1j. We set

y −<q0(x) ∼ 2−m, m > al1j.
Then,

|y − q0(x)| ∼ 2−min(bl1 j,m).
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Let us consider the collection of leading exponents of q(x)−<q0(x), where q ∈ Sα1
l1

,
and order them as in (3.1). We know that bl1 occurs in this sequence, as it is the
leading exponent of q0(x)−<q0(x), so let us assume

bl1 = aα1
l1l2

for some l2.

Now, depending on the relative sizes of m and bl1j, we consider subcases of the
following forms:



{
(1) bl1j = aα1

l1l2
j 6 aα1

l1l′2
j � m� aα1

l1(l′2+1)j for l′2 > l2
(2) m ≈ aα1

l1l′2
j for l′2 > l2

}
if m > bl1j;{

(3) aα1
l1l′2

j � m� aα1
l1(l′2+1) ≤ a

α1
l1l2

j = bl1j for l′2 < l2
(4) m ≈ aα1

l1l′2
j for l′2 6 l2

}
if m 6 bl1j.

It is a matter of direct calculation to verify that the size estimates of f and g that
one obtains in cases of the form (1) and (3) are identical to the ones obtained in
subcase 1 of case 3, while the treatment of cases (2) and (4) exactly matches that
of subcase 3 of case 3. Thus, a repetition of the same computations show that the
optimal δ satisfies the following inequality:

δ < min
l

[
δl(ϕ̃)

(
1 +

ε

δ̃l(ϕ̃)

)]
,

where ϕ̃ is an admissible change of coordinates given by (x, y) 7→ (x, y −<q0(x)).
This concludes our treatment of the case when c ∈ R. The other case is in fact

simpler than the preceding one, because now we have

|y − q0(x)| ∼ (|y|+ |x|al1 )

The size estimates for f and g are, of course, unaffected in the range al1j � k �
al1+1j. Even in the range k ∼ al1j, there can be no cancellation between the terms
|y| and |x|al1 , so this range does not require a separate treatment. The case of
complex roots has therefore been verified.

It is now possible to list all the members of C0, as follows:

C0 :=



ϕ : (x, y) 7→ (x′, y′) ; ϕ may be of the following forms:

either

{
x′ = x

y′ = y − q(x)
or

{
x′ = x− q(y)
y′ = y

where q is a real-valued Puiseux series with leading exponent > 1.
y − q(x) or x− q(y) may be either a real root of f or g, or the
real part of a complex root of f or g, provided the complex root
has a real leading coefficient.


.

The proof shows that the δ given by

δC00 (g, f, ε) := min
ϕ∈C0

δ0(g, f, ε;ϕ)

is, in fact, optimal. Moreover, it is not hard to see that the above analysis may be
replicated even if we set

y − t(x) ∼ 2−p,



1664 MALABIKA PRAMANIK

where t is a convergent Puiseux series, not necessarily associated to f or g. This
shows that, in fact,

δC0 (g, f, ε) = δC00 (g, f, ε).

To complete the proof of Theorem 1, we need to justify the assumption al > 1.
This is clearly the case in the range k > j −K for a large enough constant K. In
the remaining range k 6 j−K it suffices to write f and g as polynomials in x with
analytic coefficients in y (up to the usual non-vanishing factors). The zeroes of f
and g are then of the form x = r̃(y), where r̃(y) is a Puiseux series in y with leading
exponent greater than or equal to 1. We can now repeat our arguments with the
roles of x and y interchanged. The proof of Theorem 1 is therefore complete.

Remark. It is interesting to note the contrast of the weighted situation with the
unweighted case, where the transformation yielding the optimal δ always turned
out to be analytic [2]. For the weighted integral, the change of coordinates required
to achieve the optimal δ, while being algebraic and indeed of a very special form,
need not be better than once continuously differentiable, as the following example
shows:

Let us consider the integral

I =
∫∫

B

∣∣(y3 − x4)(y − x2)3
∣∣

|(y3 − x4)(y3 − x4 − x5)(y − x2)|δ
dy dx.

It is easy to see that the optimal δ is 1 and is obtained using the transformation
(x, y) 7→ (x, y − x 4

3 (1 + x)
1
3 ). Moreover, no analytic transformation of the form

(x, y) 7→ (x, y−s(x)) works, as can be seen by setting s(x) = c1x
p+c2xq+· · · , where

q > p > 1 are integers, and computing directly the quantity minl δl
(

1 + δ̃l
−1
)

.
This involves having to consider various ranges of values of c1, c2 and p, whence
one obtains that

min
l
δl

(
1 + δ̃l

−1
)

=



8
7

if p = 1;

min
(

31
28
,

4q + 5
q + 8

)
if p = 2, c1 = 1, c2 6= 0;

31
28

otherwise,


all of which are larger than 1.

Example. Finally, we would like to analyze Varchenko’s counterexample, which
was one of the motivating factors for the weighted integral, in this set-up. When λ
is non-negative, the only admissible transformation for the integral in (1.3) is the
identity transformation, as the denominator has neither a real root, nor a complex
root with a real leading coefficient.

Thus, when λ = 0, the Newton diagram of f consists of a single boundary
segment joining the points (0, 4) and (8, 0). One has

δ1 =
3
8
, δ̃1 =

3
2
.

Therefore,

δC0 (g, f, 1) =
3
8

(
1 +

2
3

)
=

5
8
.
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When λ > 0, the Newton diagram of f again has a single boundary segment,
joining (0, 4) and (4, 0), and one obtains

δ1 =
1
2
, δ̃1 = 2.

This implies

δC0 (g, f, 1) =
1
2

(
1 +

1
2

)
=

3
4
.

When λ < 0, there exist non-trivial admissible transformations, all of which are
of the form (x, y) 7→ (x, y − q(x)), for some Puiseux series q with leading exponent
1. For any non-trivial ϕ ∈ C0, the generalized Newton diagram of f ◦ ϕ therefore
has two boundary segments–one joining (0,4) and (2,2), and the other joining (2,2)
and (4p,0). The generalized Newton diagram of g ◦ ϕ has a single segment, joining
(0,1) and (1,0). The computations yield

δ1(ϕ) =
1
2
, δ̃1(ϕ) = 2, δ2(ϕ) =

1
2
, δ̃2(ϕ) = 2p.

Therefore,

δC0 (g, f, 1) = min
(

1
2

(
1 +

1
2

)
,

1
2

(
1 +

1
2p

))
=

1
2

+
1
4p
.

While all of the above cases corroborate Varchenko’s result, the case λ < 0
deserves special attention. The above analysis provides the optimal δ even in this
case, in contrast to [5], where it was only shown that

δ <
2p

4p− 2
.
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