Gaussian bounds for derivatives of central Gaussian semigroups on compact groups
HTML articles powered by AMS MathViewer
- by A. Bendikov and L. Saloff-Coste
- Trans. Amer. Math. Soc. 354 (2002), 1279-1298
- DOI: https://doi.org/10.1090/S0002-9947-01-02945-2
- Published electronically: November 19, 2001
- PDF | Request permission
Abstract:
For symmetric central Gaussian semigroups on compact connected groups, assuming the existence of a continuous density, we show that this density admits space derivatives of all orders in certain directions. Under some additional assumptions, we prove that these derivatives satisfy certain Gaussian bounds.References
- D. Bakry, Transformations de Riesz pour les semi-groupes symétriques. II. Étude sous la condition $\Gamma _2\geq 0$, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 145–174 (French). MR 889473, DOI 10.1007/BFb0075844
- Alexander Bendikov, Potential theory on infinite-dimensional abelian groups, De Gruyter Studies in Mathematics, vol. 21, Walter de Gruyter & Co., Berlin, 1995. Translated from the Russian manuscript by Carol Regher. MR 1445559, DOI 10.1515/9783110876840
- A. D. Bendikov, Symmetric stable semigroups on the infinite-dimensional torus, Exposition. Math. 13 (1995), no. 1, 39–79. MR 1339813
- A. Bendikov and L. Saloff-Coste, Elliptic diffusions on infinite products, J. Reine Angew. Math. 493 (1997), 171–220. MR 1491812, DOI 10.1515/crll.1997.493.171
- A. Bendikov and L. Saloff-Coste, Potential theory on infinite products and locally compact groups, Potential Anal. 11 (1999), no. 4, 325–358. MR 1719845, DOI 10.1023/A:1008654925672
- Bendikov A. and Saloff-Coste L. On and off-diagonal heat kernel behaviors on certain infinite dimensional local Dirichlet spaces. American J. Math. 122, 2000, 1205-1263.
- Bendikov A. and Saloff-Coste L. Gaussian semigroups of measures on locally compact locally connected groups, Preprint 1999.
- Bendikov A. and Saloff-Coste L. Central Gaussian semigroups of measures with continuous density, J. Funct. Anal. to appear.
- Bendikov A. and Saloff-Coste L. On the absolute continuity of Gaussian measures on locally compact groups, J. Theoret. Prob. to appear.
- Bendikov A. and Saloff-Coste L. On the hypoellipticity of sub-Laplacians on infinite dimensional compact groups. Forum Math. to appear.
- Bendikov A. and Saloff-Coste L. Hypoellipticity for bi-invariant Laplacians on infinite dimensional compact groups. Preprint 2001.
- Christian Berg, Potential theory on the infinite dimensional torus, Invent. Math. 32 (1976), no. 1, 49–100. MR 402093, DOI 10.1007/BF01389771
- Èike Born, Projective Lie algebra bases of a locally compact group and uniform differentiability, Math. Z. 200 (1989), no. 2, 279–292. MR 978301, DOI 10.1007/BF01230288
- Èike Born, An explicit Lévy-Hinčin formula for convolution semigroups on locally compact groups, J. Theoret. Probab. 2 (1989), no. 3, 325–342. MR 996994, DOI 10.1007/BF01054020
- François Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $\wp$-adiques, Bull. Soc. Math. France 89 (1961), 43–75 (French). MR 140941, DOI 10.24033/bsmf.1559
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- E. B. Davies, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2) 55 (1997), no. 1, 105–125. MR 1423289, DOI 10.1112/S0024610796004607
- Masatoshi Fukushima, Y\B{o}ichi Ōshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1994. MR 1303354, DOI 10.1515/9783110889741
- V. M. Gluškov, The structure of locally compact groups and Hilbert’s fifth problem. , Amer. Math. Soc. Transl. (2) 15 (1960), 55–93. MR 0114872, DOI 10.1090/trans2/015/04
- Herbert Heyer, Probability measures on locally compact groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 94, Springer-Verlag, Berlin-New York, 1977. MR 0501241, DOI 10.1007/978-3-642-66706-0
- Karl H. Hofmann and Sidney A. Morris, The structure of compact groups, De Gruyter Studies in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 1998. A primer for the student—a handbook for the expert. MR 1646190
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Shigeo Kusuoka and Daniel Stroock, Applications of the Malliavin calculus. I, Stochastic analysis (Katata/Kyoto, 1982) North-Holland Math. Library, vol. 32, North-Holland, Amsterdam, 1984, pp. 271–306. MR 780762, DOI 10.1016/S0924-6509(08)70397-0
- M. Ledoux, L’algèbre de Lie des gradients itérés d’un générateur markovien—développements de moyennes et entropies, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 4, 435–460 (French, with English summary). MR 1334608, DOI 10.24033/asens.1720
- Laurent Saloff-Coste, Analyse sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 14, 499–502 (French, with English summary). MR 844151
- Eberhard Siebert, Absolute continuity, singularity, and supports of Gauss semigroups on a Lie group, Monatsh. Math. 93 (1982), no. 3, 239–253. MR 661571, DOI 10.1007/BF01299300
- Karl-Theodor Sturm, On the geometry defined by Dirichlet forms, Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993) Progr. Probab., vol. 36, Birkhäuser, Basel, 1995, pp. 231–242. MR 1360279
- N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884
Bibliographic Information
- A. Bendikov
- Affiliation: Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853-4201
- Email: bendikov@math.cornell.edu
- L. Saloff-Coste
- Affiliation: Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853-4201
- MR Author ID: 153585
- Email: lsc@math.cornell.edu
- Received by editor(s): May 21, 2001
- Received by editor(s) in revised form: September 4, 2001
- Published electronically: November 19, 2001
- Additional Notes: Research partially supported by NSF Grant DMS-9802855
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1279-1298
- MSC (2000): Primary 60B15, 43A77, 60J45, 60J60
- DOI: https://doi.org/10.1090/S0002-9947-01-02945-2
- MathSciNet review: 1873006