Weak amenability of triangular Banach algebras
HTML articles powered by AMS MathViewer
- by B. E. Forrest and L. W. Marcoux
- Trans. Amer. Math. Soc. 354 (2002), 1435-1452
- DOI: https://doi.org/10.1090/S0002-9947-01-02957-9
- Published electronically: December 4, 2001
- PDF | Request permission
Abstract:
Let $\mathcal {A}$ and $\mathcal {B}$ be unital Banach algebras, and let $\mathcal {M}$ be a Banach $\mathcal {A},\mathcal {B}$-module. Then $\mathcal {T} = \begin {bmatrix}\mathcal {A} & \mathcal {M}\\ 0 & \mathcal {B} \end {bmatrix}$ becomes a triangular Banach algebra when equipped with the Banach space norm $\left \Vert \begin {bmatrix} a & m\\ 0 & b \end {bmatrix} \right \Vert = \Vert a \Vert _{\mathcal {A}} + \Vert m \Vert _{\mathcal {M}} + \Vert b \Vert _{\mathcal {B}}$. A Banach algebra $\mathcal {T}$ is said to be $n$-weakly amenable if all derivations from $\mathcal {T}$ into its $n^{\mathrm {th}}$ dual space $\mathcal {T}^{(n)}$ are inner. In this paper we investigate Arens regularity and $n$-weak amenability of a triangular Banach algebra $\mathcal {T}$ in relation to that of the algebras $\mathcal {A}$, $\mathcal {B}$ and their action on the module $\mathcal {M}$.References
- W. G. Bade, P. C. Curtis Jr., and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR 896225, DOI 10.1093/plms/s3-55_{2}.359
- W. G. Bade, H. G. Dales, and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 137 (1999), no. 656, viii+113. MR 1491607, DOI 10.1090/memo/0656
- Erik Christensen, Derivations of nest algebras, Math. Ann. 229 (1977), no. 2, 155–161. MR 448110, DOI 10.1007/BF01351601
- Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847–870. MR 143056, DOI 10.2140/pjm.1961.11.847
- H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19–54. MR 1489459
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45 (1996), no. 2, 441–462. MR 1414337, DOI 10.1512/iumj.1996.45.1147
- F. L. Gilfeather and R. R. Smith, Cohomology for operator algebras: joins, Amer. J. Math. 116 (1994), no. 3, 541–561. MR 1277445, DOI 10.2307/2374990
- U. Haagerup, All nuclear $C^{\ast }$-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305–319. MR 723220, DOI 10.1007/BF01394319
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- Richard V. Kadison, Derivations of operator algebras, Ann. of Math. (2) 83 (1966), 280–293. MR 193527, DOI 10.2307/1970433
- Gerard J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- Shôichirô Sakai, Derivations of $W^{\ast }$-algebras, Ann. of Math. (2) 83 (1966), 273–279. MR 193528, DOI 10.2307/1970432
Bibliographic Information
- B. E. Forrest
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Email: beforres@math.uwaterloo.ca
- L. W. Marcoux
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Address at time of publication: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- MR Author ID: 288388
- Email: L.Marcoux@ualberta.ca, LWMarcoux@math.uwaterloo.ca
- Received by editor(s): October 9, 1998
- Received by editor(s) in revised form: July 20, 1999
- Published electronically: December 4, 2001
- Additional Notes: Research supported in part by NSERC (Canada)
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1435-1452
- MSC (2000): Primary 46H25, 16E40
- DOI: https://doi.org/10.1090/S0002-9947-01-02957-9
- MathSciNet review: 1873013