Verlinde bundles and generalized theta linear series
HTML articles powered by AMS MathViewer
- by Mihnea Popa
- Trans. Amer. Math. Soc. 354 (2002), 1869-1898
- DOI: https://doi.org/10.1090/S0002-9947-01-02923-3
- Published electronically: November 5, 2001
- PDF | Request permission
Abstract:
In this paper we approach the study of generalized theta linear series on moduli of vector bundles on curves via vector bundle techniques on abelian varieties.
We study a naturally defined class of vector bundles on a Jacobian, called Verlinde bundles, in order to obtain information about duality between theta functions and effective global and normal generation on these moduli spaces.
References
- Arnaud Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93) Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 17–33. MR 1397056
- Arnaud Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169–179. MR 998478, DOI 10.1515/crll.1989.398.169
- V. A. Krasnov, On the degeneration of $M$-varieties, Mat. Zametki 59 (1996), no. 3, 396–401, 479 (Russian, with Russian summary); English transl., Math. Notes 59 (1996), no. 3-4, 279–282. MR 1399965, DOI 10.1007/BF02308539
- Ron Donagi and Loring W. Tu, Theta functions for $\textrm {SL}(n)$ versus $\textrm {GL}(n)$, Math. Res. Lett. 1 (1994), no. 3, 345–357. MR 1302649, DOI 10.4310/MRL.1994.v1.n3.a6
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, DOI 10.1007/BF01850655
- B. van Geemen and E. Izadi, The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, Journal of Alg. Geom. 10 (2001), 133–177
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Georg Hein, On the generalized theta divisor, Beiträge Algebra Geom. 38 (1997), no. 1, 95–98. MR 1447988
- André Hirschowitz, Problèmes de Brill-Noether en rang supérieur, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 4, 153–156 (French, with English summary). MR 956606
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- George R. Kempf, Projective coordinate rings of abelian varieties, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 225–235. MR 1463704
- Shoji Koizumi, Theta relations and projective normality of Abelian varieties, Amer. J. Math. 98 (1976), no. 4, 865–889. MR 480543, DOI 10.2307/2374034
- Yves Laszlo, À propos de l’espace des modules de fibrés de rang $2$ sur une courbe, Math. Ann. 299 (1994), no. 4, 597–608 (French). MR 1286886, DOI 10.1007/BF01459800
- Robert Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR 1082360
- Joseph Le Potier, Module des fibrés semi-stables et fonctions thêta, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 83–101 (French). MR 1397983
- Shigeru Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081, DOI 10.1017/S002776300001922X
- Shigeru Mukai, Fourier functor and its application to the moduli of bundles on an abelian variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 515–550. MR 946249, DOI 10.2969/aspm/01010515
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- M. S. Narasimhan and S. Ramanan, Generalised Prym varieties as fixed points, J. Indian Math. Soc. (N.S.) 39 (1975), 1–19 (1976). MR 424819
- Giuseppe Pareschi, Syzygies of abelian varieties, J. Amer. Math. Soc. 13 (2000), no. 3, 651–664. MR 1758758, DOI 10.1090/S0894-0347-00-00335-0
- Mihnea Popa, On the base locus of the generalized theta divisor, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 507–512 (English, with English and French summaries). MR 1715133, DOI 10.1016/S0764-4442(00)80051-8
- M. Popa, Dimension estimates for Hilbert schemes and effective base point freeness on moduli spaces of vector bundles on curves, Duke Math. J. 107 (2001), 469–495.
- Michel Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), no. 1, 103–125 (French, with English summary). MR 662131, DOI 10.24033/bsmf.1955
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
Bibliographic Information
- Mihnea Popa
- Affiliation: Department of Mathematics, University of Michigan, 525 East University, Ann Arbor, Michigan 48109-1109; Institute of Mathematics of the Romanian Academy, Bucharest, Romania
- Address at time of publication: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- MR Author ID: 653676
- Email: mpopa@math.harvard.edu
- Received by editor(s): March 1, 2001
- Published electronically: November 5, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1869-1898
- MSC (2000): Primary 14H60; Secondary 14J60
- DOI: https://doi.org/10.1090/S0002-9947-01-02923-3
- MathSciNet review: 1881021