The super order dual of an ordered vector space and the Riesz–Kantorovich formula
HTML articles powered by AMS MathViewer
- by Charalambos D. Aliprantis and Rabee Tourky
- Trans. Amer. Math. Soc. 354 (2002), 2055-2077
- DOI: https://doi.org/10.1090/S0002-9947-01-02925-7
- Published electronically: December 27, 2001
- PDF | Request permission
Abstract:
A classical theorem of F. Riesz and L. V. Kantorovich asserts that if $L$ is a vector lattice and $f$ and $g$ are order bounded linear functionals on $L$, then their supremum (least upper bound) $f\lor g$ exists in $L^\sim$ and for each $x\in L_+$ it satisfies the so-called Riesz–Kantorovich formula: \[ \bigl [f\lor g\bigr ](x)=\sup \bigl \{f(y)+g(z)\colon \ y,z\in L_+\ \mathrm {and}\ y+z=x\bigr \} . \] Related to the Riesz–Kantorovich formula is the following long-standing problem: If the supremum of two order bounded linear functionals $f$ and $g$ on an ordered vector space exists, does it then satisfy the Riesz–Kantorovich formula?
In this paper, we introduce an extension of the order dual of an ordered vector space and provide some answers to this long-standing problem. The ideas regarding the Riesz–Kantorovich formula owe their origins to the study of the fundamental theorems of welfare economics and the existence of competitive equilibrium. The techniques introduced here show that the existence of decentralizing prices for efficient allocations is closely related to the above-mentioned problem and to the properties of the Riesz–Kantorovich formula.
References
- Ju. A. Abramovič, Injective hulls of normed lattices, Dokl. Akad. Nauk SSSR 197 (1971), 743–745 (Russian). MR 0290072
- Yuri A. Abramovich, When each continuous operator is regular, Functional analysis, optimization, and mathematical economics, Oxford Univ. Press, New York, 1990, pp. 133–140. MR 1082571
- Ju. A. Abramovič and V. A. Gejler, On a question of Fremlin concerning order bounded and regular operators, Colloq. Math. 46 (1982), no. 1, 15–17. MR 672357, DOI 10.4064/cm-46-1-15-17
- Y. A. Abramovich and A. W. Wickstead, Regular operators from and into a small Riesz space, Indag. Math. (N.S.) 2 (1991), no. 3, 257–274. MR 1149679, DOI 10.1016/0019-3577(91)90014-X
- Y. A. Abramovich and A. W. Wickstead, The regularity of order bounded operators into $C(K)$. II, Quart. J. Math. Oxford Ser. (2) 44 (1993), no. 175, 257–270. MR 1240470, DOI 10.1093/qmath/44.3.257
- J. M. A. M. van Neerven, Inequality of spectral bound and growth bound for positive semigroups in rearrangement invariant Banach function spaces, Arch. Math. (Basel) 66 (1996), no. 5, 406–416. MR 1383905, DOI 10.1007/BF01781559
- P. R. Fuchs and C. J. Maxson, When do maximal submodules force linearity?, J. Pure Appl. Algebra 141 (1999), no. 3, 211–224. MR 1709564, DOI 10.1016/S0022-4049(98)00041-3
- C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, Edgeworth equilibria, Econometrica 55 (1987), no. 5, 1109–1137. MR 913363, DOI 10.2307/1911263
- Charalambos D. Aliprantis, Donald J. Brown, and Owen Burkinshaw, Existence and optimality of competitive equilibria, Springer-Verlag, Berlin, 1990. MR 1075992, DOI 10.1007/978-3-642-61521-4
- Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces, Pure and Applied Mathematics, Vol. 76, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493242
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- C. D. Aliprantis, M. Florenzano, and R. Tourky, Economic analysis in ordered vector spaces, in preparation.
- C. D. Aliprantis, R. Tourky, and N. C. Yannelis, The Riesz-Kantorovich formula and general equilibrium theory, J. Math. Econom. 34 (2000), no. 1, 55–76. MR 1762979, DOI 10.1016/S0304-4068(99)00041-5
- C. D. Aliprantis, R. Tourky, and N. C. Yannelis, A theory of value with non-linear prices: equilibrium analysis beyond vector lattices, J. Econ. Theory 100 (2001), 22–72.
- T. Andô, On fundamental properties of a Banach space with a cone, Pacific J. Math. 12 (1962), 1163–1169. MR 150572, DOI 10.2140/pjm.1962.12.1163
- Gerard Debreu, Theory of value: an axiomatic analysis of economic equilibrium, Cowles Foundation for Research in Economics at Yale University, Monograph 17, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959. MR 0110571
- G. Debreu, New concepts and techniques for equilibrium analysis, Int. Econ. Rev. 3 (1962), 257–273.
- Taqdir Husain, The open mapping and closed graph theorems in topological vector spaces, Clarendon Press, Oxford, 1965. MR 0178331, DOI 10.1007/978-3-322-96210-2
- Graham Jameson, Ordered linear spaces, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. MR 0438077, DOI 10.1007/BFb0059130
- L. V. Kantorovich, Concerning the general theory of operations in partially ordered spaces, DAN SSSR 1 (1936), 271–274 (in Russian).
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. MR 0511676
- V. I. Osipov, Monotone Boolean functions and incompatible systems of inequalities, Zh. Vychisl. Mat. i Mat. Fiz. 26 (1986), no. 10, 1592–1596, 1600 (Russian). MR 862955
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- Ioannis A. Polyrakis, Lattice-subspaces of $C[0,1]$ and positive bases, J. Math. Anal. Appl. 184 (1994), no. 1, 1–18. MR 1275938, DOI 10.1006/jmaa.1994.1178
- Ioannis A. Polyrakis, Finite-dimensional lattice-subspaces of $C(\Omega )$ and curves of $\textbf {R}^n$, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2793–2810. MR 1355300, DOI 10.1090/S0002-9947-96-01639-X
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- A. C. M. van Rooij, On the space of all regular operators between two Riesz spaces, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 1, 95–98. MR 783009, DOI 10.1016/S1385-7258(85)80023-8
- B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967. Translated from the Russian by Leo F. Boron, with the editorial collaboration of Adriaan C. Zaanen and Kiyoshi Iséki. MR 0224522
Bibliographic Information
- Charalambos D. Aliprantis
- Affiliation: Department of Economics and Department of Mathematics, Purdue University, West Lafayette, Indiana 47907–1310
- Email: aliprantis@mgmt.purdue.edu
- Rabee Tourky
- Affiliation: Department of Economics, University of Melbourne, Parkville, Victoria 3052, Australia
- Email: rtourky@unimelb.edu.au
- Received by editor(s): April 20, 2000
- Received by editor(s) in revised form: August 16, 2001
- Published electronically: December 27, 2001
- Additional Notes: The research of C. D. Aliprantis is supported by NSF Grant EIA-007506, and the research of R. Tourky is funded by Australian Research Council Grant A00103450.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2055-2077
- MSC (2000): Primary 46A40, 46E99, 47B60; Secondary 91B50
- DOI: https://doi.org/10.1090/S0002-9947-01-02925-7
- MathSciNet review: 1881030