The super order dual of an ordered vector space and the Riesz-Kantorovich formula
Authors:
Charalambos D. Aliprantis and Rabee Tourky
Journal:
Trans. Amer. Math. Soc. 354 (2002), 2055-2077
MSC (2000):
Primary 46A40, 46E99, 47B60; Secondary 91B50
DOI:
https://doi.org/10.1090/S0002-9947-01-02925-7
Published electronically:
December 27, 2001
MathSciNet review:
1881030
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A classical theorem of F. Riesz and L. V. Kantorovich asserts that if is a vector lattice and
and
are order bounded linear functionals on
, then their supremum (least upper bound)
exists in
and for each
it satisfies the so-called Riesz-Kantorovich formula:
=\sup\bigl\{f(y)+g(z)\colon y,z\in L_+ \,\hbox{and} \, y+z=x\bigr\}\,. \end{displaymath}](/tran/2002-354-05/S0002-9947-01-02925-7/gif-abstract0/img8.gif)
Related to the Riesz-Kantorovich formula is the following long-standing problem: If the supremum of two order bounded linear functionals


In this paper, we introduce an extension of the order dual of an ordered vector space and provide some answers to this long-standing problem. The ideas regarding the Riesz-Kantorovich formula owe their origins to the study of the fundamental theorems of welfare economics and the existence of competitive equilibrium. The techniques introduced here show that the existence of decentralizing prices for efficient allocations is closely related to the above-mentioned problem and to the properties of the Riesz-Kantorovich formula.
- 1. Ju. A. Abramovič, Injective hulls of normed lattices, Dokl. Akad. Nauk SSSR 197 (1971), 743–745 (Russian). MR 0290072
- 2. Yuri A. Abramovich, When each continuous operator is regular, Functional analysis, optimization, and mathematical economics, Oxford Univ. Press, New York, 1990, pp. 133–140. MR 1082571
- 3. Ju. A. Abramovič and V. A. Gejler, On a question of Fremlin concerning order bounded and regular operators, Colloq. Math. 46 (1982), no. 1, 15–17. MR 672357, https://doi.org/10.4064/cm-46-1-15-17
- 4. Y. A. Abramovich and A. W. Wickstead, Regular operators from and into a small Riesz space, Indag. Math. (N.S.) 2 (1991), no. 3, 257–274. MR 1149679, https://doi.org/10.1016/0019-3577(91)90014-X
- 5. Y. A. Abramovich and A. W. Wickstead, The regularity of order bounded operators into 𝐶(𝐾). II, Quart. J. Math. Oxford Ser. (2) 44 (1993), no. 175, 257–270. MR 1240470, https://doi.org/10.1093/qmath/44.3.257
- 6. J. M. A. M. van Neerven, Inequality of spectral bound and growth bound for positive semigroups in rearrangement invariant Banach function spaces, Arch. Math. (Basel) 66 (1996), no. 5, 406–416. MR 1383905, https://doi.org/10.1007/BF01781559
- 7. P. R. Fuchs and C. J. Maxson, When do maximal submodules force linearity?, J. Pure Appl. Algebra 141 (1999), no. 3, 211–224. MR 1709564, https://doi.org/10.1016/S0022-4049(98)00041-3
- 8. C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, Edgeworth equilibria, Econometrica 55 (1987), no. 5, 1109–1137. MR 913363, https://doi.org/10.2307/1911263
- 9. Charalambos D. Aliprantis, Donald J. Brown, and Owen Burkinshaw, Existence and optimality of competitive equilibria, Springer-Verlag, Berlin, 1990. MR 1075992
- 10. Charalambos D. Aliprantis and Owen Burkinshaw, Locally solid Riesz spaces, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics, Vol. 76. MR 0493242
- 11. Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- 12. C. D. Aliprantis, M. Florenzano, and R. Tourky, Economic analysis in ordered vector spaces, in preparation.
- 13. C. D. Aliprantis, R. Tourky, and N. C. Yannelis, The Riesz-Kantorovich formula and general equilibrium theory, J. Math. Econom. 34 (2000), no. 1, 55–76. MR 1762979, https://doi.org/10.1016/S0304-4068(99)00041-5
- 14. C. D. Aliprantis, R. Tourky, and N. C. Yannelis, A theory of value with non-linear prices: equilibrium analysis beyond vector lattices, J. Econ. Theory 100 (2001), 22-72. CMP 2002:01
- 15. T. Andô, On fundamental properties of a Banach space with a cone, Pacific J. Math. 12 (1962), 1163–1169. MR 150572
- 16. Gerard Debreu, Theory of value: an axiomatic analysis of economic equilibrium, Cowles Foundation for Research in Economics at Yale University, Monograph 17, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959. MR 0110571
- 17. G. Debreu, New concepts and techniques for equilibrium analysis, Int. Econ. Rev. 3 (1962), 257-273.
- 18. Taqdir Husain, The open mapping and closed graph theorems in topological vector spaces, Clarendon Press, Oxford, 1965. MR 0178331
- 19. Graham Jameson, Ordered linear spaces, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. MR 0438077
- 20. L. V. Kantorovich, Concerning the general theory of operations in partially ordered spaces, DAN SSSR 1 (1936), 271-274 (in Russian).
- 21. V. L. Klee, Jr., Extremal structure of convex sets, Arch. Math. 8 (1957), 234-240. MR 19:1065a
- 22. V. L. Klee, Jr., Extremal structure of convex sets, II, Math. Z. 69 (1958), 90-104. MR 19:1065b
- 23. W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971. North-Holland Mathematical Library. MR 0511676
- 24. V. I. Osipov, Monotone Boolean functions and incompatible systems of inequalities, Zh. Vychisl. Mat. i Mat. Fiz. 26 (1986), no. 10, 1592–1596, 1600 (Russian). MR 862955
- 25. Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- 26. Ioannis A. Polyrakis, Lattice-subspaces of 𝐶[0,1] and positive bases, J. Math. Anal. Appl. 184 (1994), no. 1, 1–18. MR 1275938, https://doi.org/10.1006/jmaa.1994.1178
- 27. Ioannis A. Polyrakis, Finite-dimensional lattice-subspaces of 𝐶(Ω) and curves of 𝑅ⁿ, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2793–2810. MR 1355300, https://doi.org/10.1090/S0002-9947-96-01639-X
- 28. F. Riesz, Sur quelques notions fondamentals dans la theorie générale des opérations linéaires, Ann. of Math. 41 (1940), 174-206. MR 1:147d
- 29. Helmut H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966. MR 0193469
- 30. A. C. M. van Rooij, On the space of all regular operators between two Riesz spaces, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 1, 95–98. MR 783009
- 31. B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Translated from the Russian by Leo F. Boron, with the editorial collaboration of Adriaan C. Zaanen and Kiyoshi Iséki, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967. MR 0224522
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46A40, 46E99, 47B60, 91B50
Retrieve articles in all journals with MSC (2000): 46A40, 46E99, 47B60, 91B50
Additional Information
Charalambos D. Aliprantis
Affiliation:
Department of Economics and Department of Mathematics, Purdue University, West Lafayette, Indiana 47907–1310
Email:
aliprantis@mgmt.purdue.edu
Rabee Tourky
Affiliation:
Department of Economics, University of Melbourne, Parkville, Victoria 3052, Australia
Email:
rtourky@unimelb.edu.au
DOI:
https://doi.org/10.1090/S0002-9947-01-02925-7
Keywords:
Ordered vector space,
super order dual,
Riesz--Kantorovich formula,
decentralizing prices
Received by editor(s):
April 20, 2000
Received by editor(s) in revised form:
August 16, 2001
Published electronically:
December 27, 2001
Additional Notes:
The research of C. D. Aliprantis is supported by NSF Grant EIA-007506, and the research of R. Tourky is funded by Australian Research Council Grant A00103450.
Article copyright:
© Copyright 2001
American Mathematical Society