Asymptotic linear bounds for the Castelnuovo-Mumford regularity
HTML articles powered by AMS MathViewer
- by Jürgen Herzog, Lê Tuân Hoa and Ngô Viêt Trung
- Trans. Amer. Math. Soc. 354 (2002), 1793-1809
- DOI: https://doi.org/10.1090/S0002-9947-02-02932-X
- Published electronically: January 10, 2002
- PDF | Request permission
Abstract:
We prove asymptotic linear bounds for the Castelnuovo-Mumford regularity of certain filtrations of homogeneous ideals whose Rees algebras need not be Noetherian.References
- Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 587–602. MR 1092845, DOI 10.1090/S0894-0347-1991-1092845-5
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Winfried Bruns and Jürgen Herzog, On multigraded resolutions, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 2, 245–257. MR 1341789, DOI 10.1017/S030500410007362X
- M. V. Catalisano, N. V. Trung, and G. Valla, A sharp bound for the regularity index of fat points in general position, Proc. Amer. Math. Soc. 118 (1993), no. 3, 717–724. MR 1146859, DOI 10.1090/S0002-9939-1993-1146859-0
- Karen A. Chandler, Regularity of the powers of an ideal, Comm. Algebra 25 (1997), no. 12, 3773–3776. MR 1481564, DOI 10.1080/00927879708826084
- S. D. Cutkosky, Irrational asymptotic behaviour of Castelnuovo-Mumford regularity, J. Reine Angew. Math. 522 (2000), 93–103.
- S. D. Cutkosky, L. Ein and R. Lazarsfeld, Positivity and complexity of ideal sheaves, Preprint.
- S. Dale Cutkosky, Jürgen Herzog, and Ngô Viêt Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compositio Math. 118 (1999), no. 3, 243–261. MR 1711319, DOI 10.1023/A:1001559912258
- L. Ein, R. Lazarsfeld and K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), 241–252.
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- Anthony V. Geramita, Alessandro Gimigliano, and Yves Pitteloud, Graded Betti numbers of some embedded rational $n$-folds, Math. Ann. 301 (1995), no. 2, 363–380. MR 1314592, DOI 10.1007/BF01446634
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI 10.2969/jmsj/03020179
- M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals, to appear in Invent. Math.
- Lê Tuân Hoa and Ngô Viêt Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z. 229 (1998), no. 3, 519–537. MR 1658557, DOI 10.1007/PL00004668
- Vijay Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), no. 2, 407–411. MR 1621961, DOI 10.1090/S0002-9939-99-05020-0
- Stephen McAdam, Asymptotic prime divisors, Lecture Notes in Mathematics, vol. 1023, Springer-Verlag, Berlin, 1983. MR 722609, DOI 10.1007/BFb0071575
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Karen E. Smith and Irena Swanson, Linear bounds on growth of associated primes, Comm. Algebra 25 (1997), no. 10, 3071–3079. MR 1465103, DOI 10.1080/00927879708826041
- Bernd Sturmfels, Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000), no. 1, 282–294. MR 1774768, DOI 10.1006/jabr.1999.7950
- Irena Swanson, Powers of ideals. Primary decompositions, Artin-Rees lemma and regularity, Math. Ann. 307 (1997), no. 2, 299–313. MR 1428875, DOI 10.1007/s002080050035
- Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533, DOI 10.1090/S0002-9939-1987-0902533-1
- Ngô Viêt Trung, The Castelnuovo regularity of the Rees algebra and the associated graded ring, Trans. Amer. Math. Soc. 350 (1998), no. 7, 2813–2832. MR 1473456, DOI 10.1090/S0002-9947-98-02198-9
- Ngô Viêt Trung, Gröbner bases, local cohomology and reduction number, Proc. Amer. Math. Soc. 129 (2001), no. 1, 9–18. MR 1695103, DOI 10.1090/S0002-9939-00-05503-9
- Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93–101. MR 514892, DOI 10.1017/S0027763000018225
- Wolmer V. Vasconcelos, Cohomological degrees of graded modules, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 345–392. MR 1648669
Bibliographic Information
- Jürgen Herzog
- Affiliation: Fachbereich Mathematik, Universität-GHS Essen, 45117 Essen, Germany
- MR Author ID: 189999
- Email: juergen.herzog@uni-essen.de
- Lê Tuân Hoa
- Affiliation: Institute of Mathematics, Box 631, Bò Hô, 10000 Hanoi, Vietnam
- Email: lthoa@hanimath.ac.vn
- Ngô Viêt Trung
- Affiliation: Institute of Mathematics, Box 631, Bò Hô, 10000 Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@hn.vnn.vn
- Received by editor(s): November 25, 2000
- Published electronically: January 10, 2002
- Additional Notes: The second and third authors are partially supported by the National Basic Research.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1793-1809
- MSC (2000): Primary 13D45
- DOI: https://doi.org/10.1090/S0002-9947-02-02932-X
- MathSciNet review: 1881017