## Some convolution inequalities and their applications

HTML articles powered by AMS MathViewer

- by Daniel M. Oberlin PDF
- Trans. Amer. Math. Soc.
**354**(2002), 2541-2556 Request permission

## Abstract:

We introduce a class of convolution inequalities and study the implications of these inequalities for certain problems in harmonic analysis.## References

- Jong-Guk Bak,
*An $L^p\text {-}L^q$ estimate for Radon transforms associated to polynomials*, Duke Math. J.**101**(2000), no. 2, 259–269. MR**1738178**, DOI 10.1215/S0012-7094-00-10125-1 - J.-G. Bak, D.M. Oberlin, and A. Seeger,
*Two endpoint bounds for generalized Radon transforms in the plane*, Revista Math. (to appear). - Bartolome Barcelo Taberner,
*On the restriction of the Fourier transform to a conical surface*, Trans. Amer. Math. Soc.**292**(1985), no. 1, 321–333. MR**805965**, DOI 10.1090/S0002-9947-1985-0805965-8 - Michael Christ,
*Estimates for the $k$-plane transform*, Indiana Univ. Math. J.**33**(1984), no. 6, 891–910. MR**763948**, DOI 10.1512/iumj.1984.33.33048 - Michael Christ,
*On the restriction of the Fourier transform to curves: endpoint results and the degenerate case*, Trans. Amer. Math. Soc.**287**(1985), no. 1, 223–238. MR**766216**, DOI 10.1090/S0002-9947-1985-0766216-6 - Stephen W. Drury,
*Restrictions of Fourier transforms to curves*, Ann. Inst. Fourier (Grenoble)**35**(1985), no. 1, 117–123. MR**781781** - S. W. Drury,
*A survey of $k$-plane transform estimates*, Commutative harmonic analysis (Canton, NY, 1987) Contemp. Math., vol. 91, Amer. Math. Soc., Providence, RI, 1989, pp. 43–55. MR**1002587**, DOI 10.1090/conm/091/1002587 - S. W. Drury,
*Degenerate curves and harmonic analysis*, Math. Proc. Cambridge Philos. Soc.**108**(1990), no. 1, 89–96. MR**1049762**, DOI 10.1017/S0305004100068973 - S. W. Drury and Kang Hui Guo,
*Convolution estimates related to surfaces of half the ambient dimension*, Math. Proc. Cambridge Philos. Soc.**110**(1991), no. 1, 151–159. MR**1104610**, DOI 10.1017/S0305004100070201 - S. W. Drury and K. Guo,
*Some remarks on the restriction of the Fourier transform to surfaces*, Math. Proc. Cambridge Philos. Soc.**113**(1993), no. 1, 153–159. MR**1188825**, DOI 10.1017/S0305004100075848 - S. W. Drury and B. P. Marshall,
*Fourier restriction theorems for curves with affine and Euclidean arclengths*, Math. Proc. Cambridge Philos. Soc.**97**(1985), no. 1, 111–125. MR**764500**, DOI 10.1017/S0305004100062654 - Jørgen Harmse,
*On Lebesgue space estimates for the wave equation*, Indiana Univ. Math. J.**39**(1990), no. 1, 229–248. MR**1052018**, DOI 10.1512/iumj.1990.39.39013 - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Daniel M. Oberlin,
*Convolution estimates for some distributions with singularities on the light cone*, Duke Math. J.**59**(1989), no. 3, 747–757. MR**1046747**, DOI 10.1215/S0012-7094-89-05934-6 - Daniel M. Oberlin,
*Multilinear proofs for two theorems on circular averages*, Colloq. Math.**63**(1992), no. 2, 187–190. MR**1180631**, DOI 10.4064/cm-63-2-187-190 - Daniel M. Oberlin,
*Convolution with affine arclength measures in the plane*, Proc. Amer. Math. Soc.**127**(1999), no. 12, 3591–3592. MR**1690999**, DOI 10.1090/S0002-9939-99-05462-3 - S. Losinsky,
*Sur le procédé d’interpolation de Fejér*, C. R. (Doklady) Acad. Sci. URSS (N.S.)**24**(1939), 318–321 (French). MR**0002001** - —,
*Convolution with measures on polynomial curves*, Math. Scand. (to appear). - —,
*Fourier restriction for affine arclengthmeasures in the plane*, Proc. Amer. Math. Soc.**129**(2001), 3303–3305.

## Additional Information

**Daniel M. Oberlin**- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510
- Email: oberlin@math.fsu.edu
- Received by editor(s): May 2, 2001
- Received by editor(s) in revised form: June 21, 2001
- Published electronically: November 30, 2001
- Additional Notes: The author was partially supported by the NSF
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 2541-2556 - MSC (2000): Primary 42B10
- DOI: https://doi.org/10.1090/S0002-9947-01-02921-X
- MathSciNet review: 1885663