Random points on the boundary of smooth convex bodies
HTML articles powered by AMS MathViewer
- by Matthias Reitzner
- Trans. Amer. Math. Soc. 354 (2002), 2243-2278
- DOI: https://doi.org/10.1090/S0002-9947-02-02962-8
- Published electronically: February 7, 2002
- PDF | Request permission
Abstract:
The convex hull of $n$ independent random points chosen on the boundary of a convex body $K \subset \mathbb {R}^d$ according to a given density function is a random polytope. The expectation of its $i$–th intrinsic volume for $i=1, \dots , d$ is investigated. In the case that the boundary of $K$ is sufficiently smooth, asymptotic expansions for these expected intrinsic volumes as $n \to \infty$ are derived.References
- F. Affentranger, The convex hull of random points with spherically symmetric distributions, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), no. 3, 359–383 (1993). MR 1231058
- Fernando Affentranger, Random approximation of convex bodies, Publ. Mat. 36 (1992), no. 1, 85–109 (Spanish, with English summary). MR 1179605, DOI 10.5565/PUBLMAT_{3}6192_{0}8
- Imre Bárány, Random polytopes in smooth convex bodies, Mathematika 39 (1992), no. 1, 81–92. MR 1176473, DOI 10.1112/S0025579300006872
- Imre Bárány and Christian Buchta, Random polytopes in a convex polytope, independence of shape, and concentration of vertices, Math. Ann. 297 (1993), no. 3, 467–497. MR 1245400, DOI 10.1007/BF01459511
- Christian Buchta, Zufällige Polyeder—eine Übersicht, Zahlentheoretische Analysis, Lecture Notes in Math., vol. 1114, Springer, Berlin, 1985, pp. 1–13 (German). MR 1031808, DOI 10.1007/BFb0101638
- C. Buchta, J. Müller, and R. F. Tichy, Stochastical approximation of convex bodies, Math. Ann. 271 (1985), no. 2, 225–235. MR 783553, DOI 10.1007/BF01455988
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Peter M. Gruber, Expectation of random polytopes, Manuscripta Math. 91 (1996), no. 3, 393–419. MR 1416720, DOI 10.1007/BF02567963
- Peter M. Gruber, Comparisons of best and random approximation of convex bodies by polytopes, Rend. Circ. Mat. Palermo (2) Suppl. 50 (1997), 189–216. II International Conference in “Stochastic Geometry, Convex Bodies and Empirical Measures” (Agrigento, 1996). MR 1602970
- Peter Henrici, Applied and computational complex analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Volume 1: Power series—integration—conformal mapping—location of zeros. MR 0372162
- Daniel Hug, Absolute continuity for curvature measures of convex sets. II, Math. Z. 232 (1999), no. 3, 437–485. MR 1719698, DOI 10.1007/PL00004765
- R. E. Miles, Isotropic random simplices, Advances in Appl. Probability 3 (1971), 353–382. MR 309164, DOI 10.2307/1426176
- Josef S. Müller, On the mean width of random polytopes, Probab. Theory Related Fields 82 (1989), no. 1, 33–37. MR 997430, DOI 10.1007/BF00340011
- Josef S. Müller, Approximation of a ball by random polytopes, J. Approx. Theory 63 (1990), no. 2, 198–209. MR 1079850, DOI 10.1016/0021-9045(90)90103-W
- Reitzner, M.: Stochastical approximation of smooth convex bodies. Mathematika, to appear.
- A. Rényi and R. Sulanke, Über die konvexe Hülle von $n$ zufällig gewählten Punkten, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1963), 75–84 (1963) (German). MR 156262, DOI 10.1007/BF00535300
- A. Rényi and R. Sulanke, Über die konvexe Hülle von $n$ zufällig gewählten Punkten. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 138–147 (1964) (German). MR 169139, DOI 10.1007/BF00535973
- E. Harzheim, A combinatorial theorem which is related to the invariance of the separating set for the plane, Topics in combinatorics and graph theory (Oberwolfach, 1990) Physica, Heidelberg, 1990, pp. 347–352. MR 1100054
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 0433364
- Rolf Schneider, Zur optimalen Approximation konvexer Hyperflächen durch Polyeder, Math. Ann. 256 (1981), no. 3, 289–301 (German). MR 626950, DOI 10.1007/BF01679698
- Schneider, R.: Random approximation of convex sets. J. Microscopy 151, 211–227 (1988).
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Jacob E. Goodman and Joseph O’Rourke (eds.), Handbook of discrete and computational geometry, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1997. MR 1730156
- Carsten Schütt, Random polytopes and affine surface area, Math. Nachr. 170 (1994), 227–249. MR 1302377, DOI 10.1002/mana.19941700117
- Carsten Schütt and Elisabeth Werner, Random polytopes with vertices on the boundary of a convex body, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 9, 697–701 (English, with English and French summaries). MR 1797754, DOI 10.1016/S0764-4442(00)01685-2
- Wolfgang Weil and John A. Wieacker, Stochastic geometry, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 1391–1438. MR 1243013
- Wieacker, J. A.: Einige Probleme der polyedrischen Approximation. Diplomarbeit, Freiburg im Breisgau 1978.
- M. Zähle, A kinematic formula and moment measures of random sets, Math. Nachr. 149 (1990), 325–340. MR 1124814, DOI 10.1002/mana.19901490125
Bibliographic Information
- Matthias Reitzner
- Affiliation: Institut für Analysis und Technische Mathematik, Technische Universität Wien, Wiedner Hauptstrasse 8 – 10, A-1040 Vienna, Austria
- Address at time of publication: Institut für Mathematk, Universität Freiburg, Eckerstrasse 1, D-79104 Freiburg, Germany
- MR Author ID: 339588
- Email: Matthias.Reitzner+e1142@tuwien.ac.at
- Received by editor(s): January 19, 2001
- Received by editor(s) in revised form: August 16, 2001
- Published electronically: February 7, 2002
- Additional Notes: Research supported, in part, by the Austrian Science Foundation (Project J1940-MAT)
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2243-2278
- MSC (2000): Primary 60D05, 52A22
- DOI: https://doi.org/10.1090/S0002-9947-02-02962-8
- MathSciNet review: 1885651