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LOCAL SUBGROUPS AND THE STABLE CATEGORY

WAYNE W. WHEELER

Abstract. If G is a finite group and k is an algebraically closed field of
characteristic p > 0, then this paper uses the local subgroup structure of
G to define a category L(G, k) that is equivalent to the stable category of all
left kG-modules modulo projectives. A subcategory of L(G, k) equivalent to
the stable category of finitely generated kG-modules is also identified. The
definition of L(G, k) depends largely but not exclusively upon local data; one
condition on the objects involves compatibility with respect to conjugations
by arbitrary group elements rather than just elements of p-local subgroups.

1. Introduction

One of the main themes of modular representation theory, going back many
decades to the fundamental work of R. Brauer, is the idea that the representations
of a finite group are closely related to those of its local subgroups. To some extent
this paper is intended to provide a general explanation for why this idea has proven
to be so fruitful over such a long period. In particular, the work presented here
shows that it is possible to use the local subgroups of a finite group to construct a
category equivalent to the stable category.

Let G be a finite group, let k be an algebraically closed field of characteristic p,
and let P(G) be the collection of all p-subgroups of G. The stable category kG-Mod
is obtained by factoring out the projective modules from the category of all left kG-
modules. Section 3 defines a category L(G, k) in which the objects are essentially
certain collections of modules. In particular, an object L in L(G, k) determines a
module L(P ) in kNG(P )-Mod for each P ∈ P(G). Each module L(P ) must satisfy
a condition on its variety, and the family of all modules determined by L must
be compatible under conjugation and restriction. In the compatibility conditions
conjugations by arbitrary group elements are allowed, so the definition of L(G, k)
does not depend solely on the local structure of G. The main result of this paper is
that L(G, k) is equivalent to kG-Mod. If Q is a Sylow p-subgroup of G, let l(G, k)
be the full subcategory of L(G, k) consisting of the objects L such that L(Q) is
stably isomorphic to a finitely generated module. Then l(G, k) is equivalent to the
full subcategory kG-mod of finitely generated modules in kG-Mod.

The work presented here makes extensive use of Rickard’s work on idempotent
modules [3] as well as Benson, Carlson, and Rickard’s theory of varieties for in-
finitely generated modules [1]. These topics are reviewed in Section 2. The third
section defines the category L(G, k) and a canonical functor F : kG-Mod→ L(G, k).
It is possible to define the tensor product of a kG-module M and an object L of
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L(G, k), and the result is another object of L(G, k). This idea is considered in
Section 4. Finally, Section 5 is devoted to proving that the canonical functor
F : kG-Mod→ L(G, k) is an equivalence of categories.

2. Preliminary results

Throughout this paper G denotes a finite group, and k is an algebraically closed
field of prime characteristic p. If g ∈ G and H is a subgroup of G, let gH = gHg−1.
For any kH-module M set M↑G = kG ⊗kH M ; if M is a kG-module, then M↓H
denotes the restriction of M to H . It will often be convenient simply to write M↓
when the subgroup H can be inferred from the context. We write ε : k↑GH → k for
the augmentation map given by

ε
( ∑
g∈G/H

g ⊗ xg
)

=
∑
g

xg.

Let kG-Mod denote the category of all left kG-modules, and let kG-mod be the
full subcategory of finitely generated kG-modules. If M and M ′ are kG-modules,
let PHomkG(M,M ′) denote the k-subspace of HomkG(M,M ′) consisting of those
maps that factor through a projective kG-module. The stable category kG-Mod
has the same objects as kG-Mod, but the morphisms from M to M ′ in kG-Mod
are defined by setting

HomkG(M,M ′) = HomkG(M,M ′)/PHomkG(M,M ′).

The full subcategory of kG-Mod consisting of finitely generated kG-modules is
denoted kG-mod. It is well known that the categories kG-Mod and kG-mod are
triangulated (Theorem I.2.6 of [2]), and the translation functor is given by Ω−1.
For convenience we often identify Ω−1 with the isomorphic functor Ω−1k ⊗−.

If γ : M → M ′ is a kG-homomorphism, then we normally also write γ for
the corresponding map in kG-Mod. In fact, we will generally only be concerned
with maps in the stable category. In a few cases homomorphisms are defined in
the module category, but even then it is always the image in kG-Mod that is of
interest.

Recall that if T is a triangulated category and C is a full triangulated subcategory
of T , then C is said to be a thick subcategory if it is closed under taking direct
summands of objects. Now suppose that C is a thick subcategory of kG-mod. As
in [3], we say that C is a tensor-ideal subcategory of kG-mod if M ⊗ M ′ is in
C whenever M is in C and M ′ is in kG-mod. Let C⊕ denote the smallest full
triangulated subcategory of kG-Mod that contains C and is closed under arbitrary
direct sums. A module M is said to be C-local if HomkG(C,M) = 0 for all C in C.

The following proposition summarizes the fundamental facts about idempotent
modules that will be needed in the following sections. Proofs can be found in [3].

Proposition 2.1. Let C be a tensor-ideal subcategory of kG-mod. For any object
M in kG-Mod there is a triangle

eC(M) // M // fC(M) // Ω−1
(
eC(M)

)
in kG-Mod such that eC(M) is in C⊕ and fC(M) is C-local, and such a triangle
is unique up to isomorphism. The morphism eC(M) → M is the universal map
in kG-Mod from an object of C⊕ to M , and M → fC(M) is the universal map
from M to a C-local object. The modules eC(k) and fC(k) are idempotent in the
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sense that eC(k)⊗ eC(k) ∼= eC(k) and fC(k)⊗ fC(k) ∼= fC(k) in kG-Mod. Moreover,
eC(k)⊗M ∼= eC(M) and fC(k)⊗M ∼= fC(M) in kG-Mod for any module M .

In the following work it will often be necessary to consider the universal map
η : eC(k) → k described in Proposition 2.1. By abuse of notation we usually use
the same symbol η to denote this map for any thick subcategory C of kG-mod and
for any finite group G.

Benson, Carlson, and Rickard have used idempotent modules to develop a theory
of varieties for arbitrary kG-modules, and we give a brief review of this theory. Al-
though it is common to consider the maximal ideal spectrum of the cohomology ring
H∗(G, k), we will use the space ProjH∗(G, k) of all homogeneous prime ideals that
do not contain the ideal

⊕∞
n=1H

n(G, k). If I is a homogeneous ideal inH∗(G, k), we
set V̄G(I) = {p ∈ ProjH∗(G, k) | I ⊆ p}. IfM is a finitely generated kG-module, let
J(M) be the annihilator of Ext∗kG(M,M) inH∗(G, k), and let V̄G(M) = V̄G

(
J(M)

)
.

Then V̄G(M) is closed in ProjH∗(G, k), and V̄G(k) = ProjH∗(G, k).
If M is infinitely generated, however, then the definition of V̄G(M) is more com-

plicated. For p ∈ V̄G(k) let C(p) denote the full subcategory of kG-mod consisting
of all finitely generated kG-modules M ′ such that V̄G(M ′) ⊆ V̄G(p), and let C′(p)
denote the full subcategory of C(p) consisting of all finitely generated modules M ′

such that p /∈ V̄G(M ′). Then C(p) and C′(p) are tensor-ideal subcategories of kG-
mod. If M is an arbitrary kG-module, then V̄G(M) can be defined as the collection
of all primes p ∈ V̄G(k) such that fC′(p) ⊗ eC(p) ⊗M is not projective.

Although the set V̄G(M) is not necessarily closed in V̄G(k) if M is not finitely
generated, these sets do retain the most important properties of varieties for finitely
generated modules. In particular, the following results hold for any kG-modules M
and M ′:

(1) M is projective if and only if V̄G(M) = ∅;
(2) V̄G(M ⊕M ′) = V̄G(M) ∪ V̄G(M ′);
(3) V̄G(M ⊗M ′) = V̄G(M) ∩ V̄G(M ′).

The reader should be warned, however, that the definition of V̄G(M) given here
is not used in [1]. In that paper the authors define the so-called variety VG(M)
of a module M to be a collection of homogeneous irreducible subvarieties of the
maximal ideal spectrum of H∗(G, k). The results of [1] can be translated into the
notation used here by observing that V ∈ VG(M) if and only if the generic point
of V lies in V̄G(M).

Now let V be a closed subset of V̄G(k), and let C(V ) denote the full subcategory of
kG-mod consisting of all finitely generated kG-modules M such that V̄G(M) ⊆ V .
For simplicity we write eV for eC(V ) and fV for fC(V ). If H is a subgroup of G, let
res∗G,H : V̄H(k)→ V̄G(k) denote the map induced by the restriction homomorphism
resG,H : H∗(G, k)→ H∗(H, k).

Proposition 2.2. Let V and W be closed subsets of V̄G(k), and let H be a subgroup
of G. Then

(1) eV ⊗ eW ∼= eV ∩W and fV ⊗ fW ∼= fV ∪W in kG-Mod;
(2) eV ↓H ∼= e(res∗G,H )−1(V ) and fV ↓H ∼= f(res∗G,H )−1(V );
(3) V̄G(eV ) = V and V̄G(fV ) = V̄G(k)− V .

Proof. The first two statements are proven in [3]; the third statement is Proposi-
tion 3.1 of [4].
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Proposition 2.3. Suppose that H is a subgroup of G.
(1) If M is a kG-module, then V̄H(M↓H) = (res∗G,H)−1

(
V̄G(M)

)
.

(2) If M is a kH-module, then V̄G(M↑G) = res∗G,H
(
V̄H(M)

)
.

Proof. See Propositions 4.1 and 4.2 of [4].

Now suppose that P is an arbitrary p-subgroup of G, and define

VG,P = res∗G,P
(
V̄P (k)

)
.

We shall write eG,P for eVG,P and fG,P for fVG,P . If E is an elementary abelian
p-subgroup of G, set

V −G,E =
⋃

E0<E

VG,E0

and V +
G,E = VG,E − V −G,E . Then the module λG,E = fV −G,E

⊗ eVG,E satisfies

V̄G(λG,E) = V +
G,E .

Proposition 2.4. Let E be an elementary abelian p-subgroup of G, and set N =
NG(E). Then λ↑GN,E is stably isomorphic to λG,E. Moreover, the map 1 ⊗ εη↑G :
λG,E ⊗ e↑GN,E → λG,E is a stable isomorphism.

Proof. The first statement is Proposition 4.5 of [4]. The proof of that proposition
also shows that the second statement is true, although it is not explicitly stated
in [4].

Lemma 2.5. Let V , W , and X be closed subsets of V̄G(k), and assume that W ∩
X ⊆ V . Then there are canonical stable isomorphisms (fV ⊗ eW ) ⊕ (fV ⊗ eX) →
fV ⊗ eW∪X and fV ⊗ eW → fV ∪X ⊗ eW .

Proof. See Lemma 3.2 of [4].

Let r be the p-rank of G. For 0 ≤ s ≤ r let

Vs =
⋃
E

VG,E ,

where the union is taken over all elementary abelian p-subgroups E of G with
rankE ≤ s. Set es = eVs and fs = fVs .

The proof of the following result is similar to that of Proposition 4.3 of [4].

Proposition 2.6. Let 0 ≤ s ≤ r−1, and let E1, . . . ,En be a set of representatives
for the conjugacy classes of elementary abelian p-subgroups of rank s+1 in G. Then

fs ⊗ es+1
∼=

n⊕
i=1

λG,Ei .

Proof. For 1 ≤ i ≤ n set V (i)
s+1 = VG,Ei , and let V (n+1)

s+1 be the union of all compo-
nents of Vs+1 of dimension at most s. Then Vs+1 = V

(1)
s+1 ∪ · · · ∪ V

(n+1)
s+1 , and we

prove by induction on t that fs⊗eV (1)
s+1∪···∪V

(t)
s+1

∼=
⊕t

i=1 fs⊗eV (i)
s+1

for 1 ≤ t ≤ n+1.
There is nothing to prove if t = 1, so assume that 1 < t ≤ n + 1. Because
(V (1)
s+1 ∪ · · · ∪ V

(t−1)
s+1 ) ∩ V (t)

s+1 ⊆ Vs, Lemma 2.5 and the inductive assumption give

fs ⊗ eV (1)
s+1∪···∪V

(t)
s+1

∼= (fs ⊗ eV (1)
s+1∪···∪V

(t−1)
s+1

)⊕ (fs ⊗ eV (t)
s+1

) ∼=
t⊕
i=1

fs ⊗ eV (i)
s+1
,
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as desired. Moreover, V (n+1)
s+1 ⊆ Vs, so that fs ⊗ eV (n+1)

s+1

∼= 0 in kG-Mod. Hence

fs ⊗ es+1
∼=
n+1⊕
i=1

fs ⊗ eV (i)
s+1

∼=
n⊕
i=1

fs ⊗ eVG,Ei .

Fix i with 1 ≤ i ≤ n, and let V ′i be the union of all components of Vs that are
not contained in V −G,Ei . Then VG,Ei ∩ V ′i ⊆ V −G,Ei , so Lemma 2.5 implies that

fs ⊗ eVG,Ei = fV −G,Ei∪V
′
i
⊗ e

VG,Ei

∼= fV −G,Ei
⊗ e

VG,Ei
= λG,Ei .

Thus fs ⊗ es+1
∼=
⊕n

i=1 λG,Ei , as desired.

Proposition 2.7. Let 0 ≤ s ≤ r− 1, and let E1, . . . , En be a set of representatives
for the conjugacy classes of elementary abelian p-subgroups of rank s+ 1 in G. Set
Nj = NG(Ej) for all j, and let ηj : eNj,Ej → k be the universal map described
in Proposition 2.1. Then for 1 ≤ j ≤ n there are maps αj : e↑GNj,Ej → es+1 such

that ηαj = εηj↑G and 1 ⊗
(⊕n

j=1 αj
)

: fs ⊗
(⊕n

j=1 e
↑G
Nj,Ej

)
→ fs ⊗ es+1 is a stable

isomorphism.

Proof. For each j there is a commutative diagram

es+1 ⊗ e↑GNj,Ej
1⊗εηj↑G

//

η⊗1

��

es+1 ⊗ k

η⊗1

��

k ⊗ e↑GNj,Ej 1⊗εηj↑G
// k ⊗ k,

and V̄G(e↑GNj ,Ej) = VG,Ej ⊆ Vs+1, so that η ⊗ 1 : es+1 ⊗ e↑GNj,Ej → e↑GNj ,Ej is a stable
isomorphism for all j. Set αj = (1 ⊗ εηj↑G)(η ⊗ 1)−1. Then the above diagram
shows that ηαj = εηj↑G for all j.

To prove that 1 ⊗
(⊕n

j=1 αj
)

: fs ⊗
(⊕n

j=1 e
↑G
Nj ,Ej

)
→ fs ⊗ es+1 is a sta-

ble isomorphism, it suffices to prove that 1 ⊗ 1 ⊗
(⊕n

j=1 εηj↑
G
)

: fs ⊗ es+1 ⊗(⊕n
j=1 e

↑G
Nj,Ej

)
→ fs ⊗ es+1 is a stable isomorphism. Now fs ⊗ es+1

∼=
⊕n

i=1 λG,Ei ,

and V̄G(λG,Ei ⊗ e
↑G
Nj,Ej

) = V +
G,Ei

∩ VG,Ej = ∅ if i 6= j. Thus it is only necessary

to show that
⊕n

j=1(1 ⊗ εηj↑G) :
⊕n

j=1(λG,Ej ⊗ e
↑G
Nj ,Ej

) →
⊕n

j=1 λG,Ej is a stable
isomorphism. But this is an immediate consequence of Proposition 2.4.

3. The category of local modules

The main purpose of this section is to define the category L(G, k) of G-local
modules and a canonical functor F : kG-Mod→ L(G, k) that will be studied in the
following sections. It will be useful to begin by fixing some notation. Let P(G) be
the collection of all p-subgroups of G. If P ∈ P(G), then throughout the remainder
of the paper we usually write N for NG(P ). Similar notation will be used for
normalizers of other p-subgroups. For example, if P0, P1 ∈ P(G), then we write N0

for NG(P0) and N1 for NG(P1).
Suppose that for every P ∈ P(G) we have a module L(P ) in kN -Mod such that

V̄N
(
L(P )

)
⊆ VN,P . Assume in addition that whenever P1 ⊆ P2 in P(G), there is a
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homomorphism φP1,P2 : L(P1)↓N1∩N2
→ L(P2)↓N1∩N2

such that the diagram

L(P1)↓N1∩N2

φP1,P2 //

ψP1,P2

��

L(P2)↓N1∩N2

eN1∩N2,P1 ⊗ L(P2)↓N1∩N2 η⊗1
// L(P2)↓N1∩N2

commutes for some stable isomorphism ψP1,P2 . Assume that φP,P = 1L(P ) for all
P ∈ P(G) and that φP2,P3 ◦ φP1,P2 = φP1,P3 in k[N1 ∩ N2 ∩ N3]-Mod whenever
P1 ⊆ P2 ⊆ P3 in P(G). For each g ∈ G assume that there is a stable isomorphism
cg(P ) : g ⊗ L(P )→ L(gP ) such that the diagram

g ⊗ h⊗ L(P )
∼= //

g⊗ch(P )

��

gh⊗ L(P )

cgh(P )

��

g ⊗ L(hP )
cg(hP )

// L(ghP )

commutes for all g, h ∈ G and all P ∈ P(G); assume in addition that if g ∈ N ,
then cg(P ) : g ⊗ L(P ) → L(P ) is the map given by g ⊗ x 7→ gx. Finally, suppose
that if P1 ⊆ P2 and g ∈ G, then there is a commutative diagram(

g ⊗ L(P1)
)
↓g(N1∩N2)

cg(P1)
//

g⊗φP1,P2

��

L(gP1)↓g(N1∩N2)

φgP1,gP2

��(
g ⊗ L(P2)

)
↓g(N1∩N2)

cg(P2)
// L(gP2)↓g(N1∩N2).

Then we say that (L, φ, c) is a G-local module (over k). We usually abbreviate the
notation by writing L for the G-local module (L, φ, c). For simplicity we sometimes
also write φ instead of φP1,P2 when the subgroups P1 and P2 can be determined
from the context.

If L = (L, φ, c) and L′ = (L′, φ′, c′) are G-local modules, let ξ(P ) : L(P )→ L′(P )
be a map in kN -Mod for all P ∈ P(G). Assume that there is a commutative
diagram

g ⊗ L(P )
cg(P )

//

g⊗ξ(P )

��

L(gP )

ξ(gP )

��

g ⊗ L′(P )
c′g(P )

// L′(gP )

for all P ∈ P(G) and g ∈ G; assume in addition that if P1, P2 ∈ P(G) and P1 ⊆ P2,
then there is a commutative diagram

L(P1)↓N1∩N2

φP1,P2 //

ξ(P1)

��

L(P2)↓N1∩N2

ξ(P2)

��

L′(P1)↓N1∩N2 φ′P1,P2

// L′(P2)↓N1∩N2
.
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Under these circumstances we say that the sequence of maps ξ = {ξ(P )}P∈P(G) is
a G-local homomorphism.

Let L(G, k) denote the category in which the objects are the G-local modules
and the morphisms are the G-local homomorphisms. Our next objective is to define
a canonical functor F : kG-Mod→ L(G, k). For any kG-module M set (FM)(P ) =
eN,P ⊗M↓N for all P ∈ P(G). The map φP1,P2 : (FM)(P1)→ (FM)(P2) is defined
to be the composition

eN1,P1↓N1∩N2
⊗M↓N1∩N2

(1⊗η⊗1)−1

−−−−−−−→ eN1,P1↓ ⊗ eN2,P2↓ ⊗M↓
η⊗1⊗1−−−−→ eN2,P2↓N1∩N2

⊗M↓N1∩N2

whenever P1 ⊆ P2. For each P ∈ P(G) and each g ∈ G there is a stable isomorphism

g ⊗ eN,P
(

(g⊗1)⊗η
)−1

−−−−−−−−−→ (g ⊗ eN,P )⊗ egN,gP
(g⊗η)⊗1−−−−−→ egN,gP .

Combining this map with the isomorphism g⊗M↓N →M↓gN given by g⊗m 7→ gm,
we obtain a stable isomorphism cg(P ) by taking the composition

g ⊗ (eN,P ⊗M↓N ) ∼= (g ⊗ eN,P )⊗ (g ⊗M↓N ) ∼= egN,gP ⊗M↓gN .

If γ : M → M ′ is a map in kG-Mod, then Fγ is the G-local homomorphism
satisfying (Fγ)(P ) = 1⊗ γ : eN,P ⊗M↓N → eN,P ⊗M ′↓N for all P ∈ P(G).

We have now defined a canonical functor F : kG-Mod → L(G, k). It will some-
times be useful to consider the analogous functor kH-Mod → L(H, k) for some
subgroup H of G. By abuse of notation we use the same symbol F to denote this
functor for any subgroup of G.

The following proposition characterizes the isomorphisms in L(G, k). The proof
is straightforward and is left to the reader.

Proposition 3.1. Let ξ : L → L′ be a G-local homomorphism. Then ξ is an
isomorphism in L(G, k) if and only if ξ(P ) : L(P )→ L′(P ) is an isomorphism for
all P ∈ P(G).

4. Tensor products

If one thinks of a G-local module essentially as a kG-module, then one would
expect to be able to define the tensor product of two G-local modules. Such a
definition is indeed possible, but for our purposes it will be more useful to consider
the tensor product of a kG-module and a G-local module. This construction has
the advantage of being slightly easier to define and to use. The main result of this
section is the existence of a certain natural isomorphism relating tensor products
and the functor F. This isomorphism is needed in the next section to show that F

is an equivalence.
Let M be a kG-module, and let L = (L, φ, c) be a G-local module. For any

P ∈ P(G) set (M ⊗ L)(P ) = M↓N ⊗ L(P ). If P1, P2 ∈ P(G) with P1 ⊆ P2, then
there is a stable isomorphism 1⊗ φP1,P2 : M↓N1∩N2

⊗L(P1)↓N1∩N2
→M↓N1∩N2

⊗
L(P2)↓N1∩N2

. For any g ∈ G and P ∈ P(G) let mg(P ) : g ⊗M↓N →M↓gN be the
isomorphism given by g ⊗ x 7→ gx. Then there is a stable isomorphism given by
the composition

g ⊗
(
M↓N ⊗ L(P )

) ∼= (g ⊗M↓N )⊗
(
g ⊗ L(P )

) mg(P )⊗cg(P )−−−−−−−−−→M↓gN ⊗ L(gP ).
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With these definitions it is easy to see that M ⊗L = (M ⊗L, 1⊗φ,m⊗ c) is again
a G-local module. In order to provide a connection between this definition and the
functor F, we begin with the following lemma.

Lemma 4.1. Let L be a G-local module, and let P1, P2 ∈ P(G). Then there is a
stable isomorphism θL(P1, P2) of k[N1 ∩N2]-modules given by the composition

eN1,P1↓N1∩N2
⊗ L(P2)↓ (1⊗η⊗φ)−1

−−−−−−−→∼=
eN1,P1↓ ⊗ eN2,P2↓ ⊗ L(P1 ∩ P2)↓

η⊗1⊗φ−−−−→∼= eN2,P2↓ ⊗ L(P1)↓.

Moreover, the isomorphism θL(P1, P2) is natural in L. For each g ∈ G there is a
commutative diagram in k[g(N1 ∩N2)]-Mod of the form

g ⊗
(
eN1,P1↓ ⊗ L(P2)↓

)
∼=

g⊗θL(P1,P2)

��

egN1,gP1↓ ⊗
(
g ⊗ L(P2)

)
↓

1⊗cg(P2)
// egN1,gP1↓ ⊗ L(gP2)↓

θL(gP1,
gP2)

��

g ⊗
(
eN2,P2↓ ⊗ L(P1)↓

)
∼= egN2,gP2↓ ⊗

(
g ⊗ L(P1)

)
↓

1⊗cg(P1)
// egN2,gP2↓ ⊗ L(gP1)↓.

Furthermore, if P1 ⊆ P2 and P ∈ P(G), then there is a commutative diagram
in k[N1 ∩N2 ∩N ]-Mod given by

eN1,P1↓ ⊗ eN2,P2↓ ⊗ L(P )↓
∼= //

1⊗θL(P2,P )
��

eN2,P2↓ ⊗ eN1,P1↓ ⊗ L(P )↓
1⊗θL(P1,P )

��

eN1,P1↓ ⊗ eN,P↓ ⊗ L(P2)↓

η⊗1⊗1 ++WWWWWWWWWW
eN2,P2↓ ⊗ eN,P↓ ⊗ L(P1)↓

η⊗1⊗φssgggggggggg

eN,P↓ ⊗ L(P2)↓.

Proof. Set P3 = P1 ∩ P2. Because N1 ∩N2 ⊆ N3, we can restrict the maps φP3,Pi
to N1 ∩N2 for i = 1, 2, and we claim that the resulting maps 1⊗ η ⊗ φP3,P2↓ and
η ⊗ 1 ⊗ φP3,P1↓ occurring in the definition of θL(P1, P2) are isomorphisms. There
is a triangle of k[N1 ∩N2]-modules of the form

eN2∩N3,P3↓ ⊗ L(P2)↓ η⊗1−−−→ L(P2)↓ → fN2∩N3,P3↓ ⊗ L(P2)↓ → Ω−1k ⊗ eN2∩N3,P3↓ ⊗ L(P2)↓.

Because V̄N1∩N2

(
eN1,P1↓⊗fN2∩N3,P3↓⊗L(P2)↓

)
= ∅, the map η⊗1 occurring in this

triangle becomes an isomorphism upon tensoring with eN1,P1↓. The commutativity
of the diagram

eN1,P1↓N1∩N2
⊗ eN2,P2↓N1∩N2

⊗ L(P3)↓N1∩N2

1⊗η⊗φP3,P2↓//

1⊗1⊗ψP3,P2
∼=

��

eN1,P1↓N1∩N2
⊗ L(P2)↓N1∩N2

eN1,P1↓ ⊗ eN2,P2↓ ⊗ eN2∩N3,P3↓ ⊗ L(P2)↓ 1⊗η⊗η⊗1
//

1⊗η⊗1⊗1 ∼=
��

eN1,P1↓N1∩N2
⊗ L(P2)↓N1∩N2

eN1,P1↓N1∩N2
⊗ eN2∩N3,P3↓N1∩N2

⊗ L(P2)↓N1∩N2

∼=
1⊗η⊗1

// eN1,P1↓N1∩N2
⊗ L(P2)↓N1∩N2

shows that 1⊗η⊗φP3,P2↓ is an isomorphism. Similarly, η⊗1⊗φP3,P1↓ is an isomor-
phism, and so is θL(P1, P2). It is straightforward to check that this isomorphism is
natural in L.
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Now suppose in addition that g ∈ G. Observe that there is a commutative
diagram in k[g(N1 ∩N2)]-Mod of the form

g ⊗
(
eN1,P1↓ ⊗ eN2,P2↓ ⊗ L(P3)↓

) g⊗(1⊗η⊗φ)
//

∼=
��

g ⊗
(
eN1,P1↓ ⊗ L(P2)↓

)
∼=

��

egN1,gP1↓ ⊗ egN2,gP2↓ ⊗
(
g ⊗ L(P3)

)
↓

1⊗1⊗cg(P3)

��

1⊗η⊗(g⊗φ)
// egN1,gP1↓ ⊗

(
g ⊗ L(P2)

)
↓

1⊗cg(P2)

��

egN1,gP1↓ ⊗ egN2,gP2↓ ⊗ L(gP3)↓
1⊗η⊗φ

// egN1,gP1↓ ⊗ L(gP2)↓.

Combining this diagram with the analogous diagram in which P1 and P2 are inter-
changed, we conclude that the first diagram given in the statement of the lemma
commutes.

Finally, if P1 ⊆ P2 and P ∈ P(G), then it is straightforward to verify that the
last diagram given in the statement of the lemma commutes.

Proposition 4.2. Let L be a G-local module, and let P ∈ P(G). Then there is an
isomorphism F

(
L(P )↑G

) ∼= e↑GN,P ⊗ L, and this isomorphism is natural in L.

Proof. Let P0 ∈ P(G). By Lemma 4.1 there are isomorphisms

eN0,P0 ⊗ L(P )↑G↓N0
∼=

⊕
g∈N0\G/N

eN0,P0 ⊗
(
g ⊗ L(P )

)
↓gN∩N0

↑N0

∼=
⊕
g

(
eN0,P0↓gN∩N0

⊗ L(gP )↓gN∩N0

)
↑N0

∼=
⊕
g

(
egN,gP ↓gN∩N0

⊗ L(P0)↓gN∩N0

)
↑N0

∼=
⊕
g

(g ⊗ eN,P )↓gN∩N0
↑N0 ⊗ L(P0)

∼= e↑GN,P↓N0
⊗ L(P0),

and it is straightforward to check that these isomorphisms are natural in L. Let
Φ(P0) : eN0,P0 ⊗ L(P )↑G↓N0

→ e↑GN,P↓N0
⊗ L(P0) be the above isomorphism. Then

it is only necessary to show that Φ : F
(
L(P )↑G

)
→ e↑GN,P ⊗L is a G-local homomor-

phism.
Suppose that P1, P2 ∈ P(G) with P1 ⊆ P2. We wish to show that there is a

commutative diagram

eN1,P1↓N1∩N2
⊗ L(P )↑G↓N1∩N2

Φ(P1)

��

eN1,P1↓ ⊗ eN2,P2↓ ⊗ L(P )↑G↓∼=

1⊗η⊗1
oo

η⊗1⊗1
// eN2,P2↓ ⊗ L(P )↑G↓

Φ(P2)

��

e↑GN,P ↓N1∩N2
⊗ L(P1)↓N1∩N2 1⊗φP1,P2

// e↑GN,P ↓ ⊗ L(P2)↓.
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If g ∈ G, then Lemma 4.1 shows that in k[gN∩N1∩N2]-Mod there is a commutative
diagram given by

eN1,P1↓ ⊗ eN2,P2↓ ⊗ L(gP )↓
∼= //

1⊗θL(P2,
gP )

��

eN2,P2↓ ⊗ eN1,P1↓ ⊗ L(gP )↓
1⊗θL(P1,

gP )
��

eN1,P1↓ ⊗ egN,gP ↓ ⊗ L(P2)↓

η⊗1⊗1 ++WWWWWWWWWWW
eN2,P2↓ ⊗ egN,gP ↓ ⊗ L(P1)↓

η⊗1⊗φssggggggggggg

egN,gP ↓ ⊗ L(P2)↓.

After inducing from gN ∩ N1 ∩ N2 to N1 ∩ N2 and taking the direct sum over
g ∈ (N1 ∩ N2)\G/N , some tedious verifications show that there is a commutative
diagram

eN2,P2↓ ⊗ eN1,P1↓ ⊗ L(P )↑G↓N1∩N2

∼=
��

η⊗Φ(P1)
// e↑GN,P↓N1∩N2

⊗ L(P1)↓N1∩N2

1⊗φP1,P2

��

eN1,P1↓ ⊗ eN2,P2↓ ⊗ L(P )↑G↓N1∩N2 η⊗Φ(P2)
// e↑GN,P↓N1∩N2

⊗ L(P2)↓N1∩N2
.

It is easy to see that this is equivalent to the commutativity of the desired diagram.
Finally, suppose that g ∈ G and that P0 ∈ P(G). We must show that there is a

commutative diagram in k[gN0]-Mod of the form

g ⊗
(
eN0,P0 ⊗ L(P )↑G↓

)
g⊗Φ(P0)

��

∼= egN0,gP0 ⊗
(
g ⊗ L(P )↑G↓

)
// egN0,gP0 ⊗ L(P )↑G↓

Φ(gP0)

��

g ⊗
(
e↑GN,P↓N0

⊗ L(P0)
)
∼= e↑GN,P↓gN0

⊗
(
g ⊗ L(P0)

)
// e↑GN,P↓gN0

⊗ L(gP0).

Let T be a set of representatives for the (N0, N) double cosets in G. It follows from
Lemma 4.1 that there is a commutative diagram

g ⊗
(
eN0,P0 ⊗ L(P )↑G↓N0

) ∼= //

��

egN0,gP0 ⊗ L(P )↑G↓gN0

��⊕
h∈T

(
g ⊗

(
eN0,P0↓ ⊗ (h⊗ L(P ))↓hN∩N0

↑N0
)) ∼= //

��

⊕
h egN0,gP0 ⊗

(
gh⊗ L(P )

)
↓ghN∩gN0

↑gN0

��⊕
h∈T

(
g ⊗ (eN0,P0↓ ⊗ L(hP )↓hN∩N0

)↑N0
) ∼= //

��

⊕
h∈T

(
egN0,gP0↓ ⊗ L(ghP )↓

)
↑gN0

��⊕
h∈T

(
g ⊗ (ehN,hP ↓ ⊗ L(P0)↓)↑N0

) ∼= //

��

⊕
h∈T

(
eghN,ghP ↓ ⊗ L(gP0)↓

)
↑gN0

��

g ⊗
(
e↑GN,P ↓N0

⊗ L(P0)
) ∼= // e↑GN,P ↓gN0

⊗ L(gP0),

and this completes the proof.

It is possible to define not only the tensor product but also operations such as
induction and restriction of G-local modules. In the case of restriction, for example,
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let L be a G-local module, and let H ⊆ G. Define an H-local module L↓H by setting

L↓H(P ) = L(P )↓H∩N
for every p-subgroup P ⊆ H . Note that V̄N

(
L(P )

)
⊆ VN,P , so

V̄H∩N
(
L↓H(P )

)
= (res∗N,H∩N )−1

(
V̄N
(
L(P )

))
⊆ (res∗N,H∩N)−1(VN,P ) = VH∩N,P .

If P1 and P2 are p-subgroups of H with P1 ⊆ P2, then the map φP1,P2 : L(P1)↓N1∩N2

→ L(P2)↓N1∩N2
gives a commutative diagram

L(P1)↓N1∩N2∩H
φP1,P2↓ //

ψP1,P2↓
��

L(P2)↓N1∩N2∩H

eN1∩N2,P1↓ ⊗ L(P2)↓
η⊗1

// L(P2)↓N1∩N2∩H .

Moreover, (res∗N1∩N2,N1∩N2∩H)−1(VN1∩N2,P1) = VN1∩N2∩H,P1 so that

eN1∩N2,P1↓N1∩N2∩H
∼= eN1∩N2∩H,P1 .

Finally, if h ∈ H , then ch(P ) : h ⊗ L(P ) → L(hP ) is a stable isomorphism, so
ch(P )↓hN∩H : h ⊗ L↓H(P ) → L↓H(hP ) is also a stable isomorphism. It is easy to
check that the resulting object L↓H = (L↓H , φ↓H , c↓H) is an H-local module. If
ξ : L → L′ is a G-local homomorphism, set ξ↓H(P ) = ξ(P )↓N∩H : L(P )↓N∩H →
L′(P )↓N∩H for every p-subgroup P of H . Then ξ↓H : L↓H → L′↓H is an H-local
homomorphism, so there is a restriction functor resG,H : L(G, k)→ L(H, k).

Using arguments similar to those given in the proof of Proposition 4.2, one can
show that for any P ∈ P(G) there is a natural isomorphism F

(
L(P )

) ∼= eN,P ⊗L↓N
in L(N, k). It is much easier, however, to deduce the existence of this isomorphism
from Theorem 5.9, so we postpone any further discussion of the restriction functor
to the next section.

5. An equivalence of categories

The current section is devoted to showing that the canonical functor F : kG-Mod
→ L(G, k) is an equivalence of categories. Constructing an explicit adjoint seems
to be rather difficult, so we prove that F is an equivalence by showing that it is
essentially surjective, full, and faithful. As a first step toward proving faithful-
ness, we begin with a result showing that any G-local homomorphism is uniquely
determined by its value on a Sylow p-subgroup.

Proposition 5.1. Let L and L′ be G-local modules, and let ξ : L→ L′ be a G-local
homomorphism such that ξ(P ) = 0 for some Sylow p-subgroup P of G. Then ξ = 0.

Proof. Let Q be a p-subgroup of G, and let R be a Sylow p-subgroup of NG(Q).
Then there is an element g ∈ G with gR ⊆ P . The commutative diagram

g ⊗ L(Q)
cg(Q)

//

g⊗ξ(Q)

��

L(gQ)

ξ(gQ)

��

g ⊗ L′(Q)
c′g(Q)

// L′(gQ)

shows that ξ(Q) = 0 if and only if ξ(gQ) = 0. In order to show that ξ(Q) = 0, then,
we may replace Q by gQ and may therefore assume that g = 1 and that R ⊆ P .
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The commutative diagram

L(Q)↓NG(Q)∩NG(P )

φQ,P
//

ξ(Q)↓
��

L(P )↓NG(Q)∩NG(P )

ξ(P )↓=0

��

L′(Q)↓NG(Q)∩NG(P )

φ′Q,P
//

ψQ,P

��

L′(P )↓NG(Q)∩NG(P )

eNG(Q)∩NG(P ),Q ⊗ L′(P )↓
η⊗1

// L′(P )↓NG(Q)∩NG(P )

shows that (η⊗1)◦ψQ,P ◦ξ(Q)↓ = 0. But V̄NG(Q)∩NG(P )

(
L(Q)↓

)
⊆ VNG(Q)∩NG(P ),Q,

so the map (η⊗ 1) ◦ψQ,P ◦ ξ(Q)↓ factors uniquely through η⊗ 1, and hence ψQ,P ◦
ξ(Q)↓ = 0. Because ψQ,P is a stable isomorphism, it follows that ξ(Q)↓NG(Q)∩NG(P )

= 0 and hence ξ(Q)↓R = 0. Thus

ξ(Q) =
1

|NG(Q) : R| TrNG(Q)
R

(
ξ(Q)↓R

)
= 0,

as desired.

Let P be a Sylow p-subgroup of G. Set N = NG(P ), and let g ∈ G. If Q is a
Sylow p-subgroup of gN ∩N , then Q ⊆ gP ∩ P ⊆ gN ∩N , and hence Q = gP ∩ P .
It follows that the map η : egN∩N,gP∩P → k is a stable isomorphism, and hence so
are

φgP∩P,gP : L(gP ∩ P )↓gN∩N → L(gP )↓gN∩N
and

φgP∩P,P : L(gP ∩ P )↓gN∩N → L(P )↓gN∩N .

Definition 5.2. Let L and L′ be G-local modules, let P be a Sylow p-subgroup of
G, and set N = NG(P ). Suppose that γ : L(P )→ L′(P ) is a kN -homomorphism.
We say that γ is G-stable if there is a commutative diagram in k[gN ∩N ]-Mod of
the form(
g ⊗ L(P )

)
↓

g⊗γ
��

cg(P )
// L(gP )↓ φ−1

// L(gP ∩ P )↓ φ
// L(P )↓

γ

��(
g ⊗ L′(P )

)
↓

c′g(P )

// L′(gP )↓
(φ′)−1

// L′(gP ∩ P )↓
φ′

// L′(P )↓

for all g ∈ G.

The following result is easy to verify, and the proof is left to the reader.

Proposition 5.3. Let L and L′ be G-local modules, let P be a Sylow p-subgroup of
G, and set N = NG(P ). Suppose that γ : L(P ) → L′(P ) is a kN -homomorphism.
If there is a G-local homomorphism ξ : L→ L′ with ξ(P ) = γ, then γ is G-stable.

Let L and L′ be G-local modules, and let P be a Sylow p-subgroup of G. Set
N = NG(P ). We will define a homomorphism

T = TL,L
′

P : HomkN

(
L(P ), L′(P )

)
→ HomL(G,k)(L,L′).
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Because P is a Sylow p-subgroup of G, we have eN,P ∼= kN . The maps ι : kG → k↑GN
and ε : k↑GN → kG given by ι(x) =

∑
g∈G/N g ⊗ x and ε

(∑
g∈G/N g ⊗ xg

)
=
∑

g xg
satisfy ει = 1k because |G : N | ≡ 1 (mod p). If γ : L(P ) → L′(P ) is a kN -
homomorphism, let Tγ : L → L′ be the G-local homomorphism given by the
composition

L
ι⊗1−−→ k↑GN ⊗ L ∼= e↑GN,P ⊗ L ∼= F

(
L(P )↑G

) F(γ↑G)−−−−→ F
(
L′(P )↑G

)
∼= e↑GN,P ⊗ L′ ∼= k↑GN ⊗ L′

ε⊗1−−→ L′.

Proposition 5.4. Let L and L′ be G-local modules, and let P be a Sylow p-subgroup
of G. Set N = NG(P ), and let γ : L(P )→ L′(P ) be a kN -homomorphism.

(1) If γ is G-stable, then Tγ : L→ L′ is a G-local homomorphism with (Tγ)(P ) =
γ.

(2) If L = FM and L′ = FM ′ for some kG-modules M and M ′, then Tγ =
F(TrGN γ).

Proof. To compute (Tγ)(P ), we begin by observing that the definition of the iso-
morphism in Proposition 4.2 shows that the composition of the isomorphisms

L(P )↑G↓N ∼= eN,P ⊗ L(P )↑G↓N = F
(
L(P )↑G

)
(P )

∼= e↑GN,P↓N ⊗ L(P ) ∼= k↑GN ↓N ⊗ L(P )

is given by

L(P )↑G↓N ∼=
⊕

g∈N\G/N

(
g ⊗ L(P )

)
↓gN∩N↑N

∼=
⊕
g

L(gP )↓gN∩N↑N

∼=
⊕
g

L(gP ∩ P )↓gN∩N↑N

∼=
⊕
g

L(P )↓gN∩N↑N

∼=
⊕
g

k↑GgN∩N ⊗ L(P )

∼= k↑GN ↓N ⊗ L(P ).

If γ is G-stable, then there is a commutative diagram

L(P )

γ

��

∼= k ⊗ L(P )

1⊗γ
��

ι⊗1
// k↑GN ↓N ⊗ L(P )

1⊗γ
��

∼= L(P )↑G↓N
γ↑G↓N

��

L′(P ) ∼= k ⊗ L′(P ) k↑GN ↓N ⊗ L′(P )
ε⊗1

oo ∼= L′(P )↑G↓N .

Hence (Tγ)(P ) = γ, and (1) holds.
Now suppose that L = FM and L′ = FM ′. Identifying eN,P with kN , we may

assume that L(P ) = M↓N and L′(P ) = M ′↓N . Then the isomorphism

k↑GN ↓N ⊗ L(P ) = k↑GN ↓N ⊗M↓N ∼= M↓N↑G↓N = L(P )↑G↓N
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is given by (g ⊗ 1) ⊗m 7→ g ⊗ g−1m, and similarly for L′ instead of L. It follows
that the composition

M↓N
ι⊗1−−→ k↑GN ↓N ⊗M↓N ∼= M↓N↑G↓N
γ↑G↓N−−−−→M ′↓N↑G↓N ∼= k↑GN ↓N ⊗M ′↓N

ε⊗1−−→M ′↓N
is equal to TrGN γ. Thus Tγ : FM → FM ′ and F(TrGN γ) : FM → FM ′ are G-local
homomorphisms with (Tγ)(P ) = F(TrGN γ)(P ). Proposition 5.1 now implies that
Tγ = F(TrGN γ), as desired.

Corollary 5.5. The functor F : kG-Mod→ L(G, k) is full.

Proof. Let M and M ′ be kG-modules, and let ξ : FM → FM ′ be a G-local ho-
momorphism. Let P be a Sylow p-subgroup of G, and set N = NG(P ). Then
ξ(P ) is G-stable, so Tξ(P ) : FM → FM ′ satisfies

(
Tξ(P )

)
(P ) = ξ(P ). Hence

ξ = Tξ(P ) = F
(
TrGN ξ(P )

)
, and F is full.

As another consequence of Proposition 5.4, we present a result that strengthens
the statement of Proposition 3.1.

Corollary 5.6. Let ξ : L→ L′ be a G-local homomorphism, and let P be a Sylow
p-subgroup of G. Then ξ is an isomorphism if and only if ξ(P ) is an isomorphism.

Proof. It is clear that if ξ is an isomorphism, then ξ(P ) is an isomorphism. To prove
the converse, suppose that ξ(P ) is an isomorphism. Because ξ(P ) is G-stable, the
map ξ(P )−1 : L′(P )→ L(P ) is also G-stable. By Proposition 5.4 there is a G-local
homomorphism ξ′ : L′ → L with ξ′(P ) = ξ(P )−1. Then (ξ′ξ)(P ) = 1L(P ) and
(ξξ′)(P ) = 1L′(P ), so ξ′ξ = 1L and ξξ′ = 1L′ by Proposition 5.1. Thus ξ is an
isomorphism.

The following technical lemma is needed to show that the functor F is essentially
surjective.

Lemma 5.7. Let ξ1 : L1 → L′1 and ξ2 : L2 → L′2 be G-local homomorphisms, and
let P be a Sylow p-subgroup of G. Set N = NG(P ). Suppose that γ : L1(P ) →
L2(P ) and γ′ : L′1(P ) → L′2(P ) are kN -homomorphisms such that there is a com-
mutative diagram

L1(P )

γ

��

ξ1(P )
// L′1(P )

γ′

��

L2(P )
ξ2(P )

// L′2(P ).

Then (Tγ′) ◦ ξ1 = ξ2 ◦ (Tγ).

Proof. The result follows immediately from the commutativity of the diagram

L1

ξ1

��

ι⊗1
// k↑GN ⊗ L1

1⊗ξ1
��

∼= F
(
L1(P )↑G

)
F

(
ξ1(P )↑G

)
��

F(γ↑G)
// F
(
L2(P )↑G

)
F

(
ξ2(P )↑G

)
��

∼= k↑GN ⊗ L2

1⊗ξ2
��

ε⊗1
// L2

ξ2

��

L′1 ι⊗1
// k↑GN ⊗ L′1 ∼= F

(
L′1(P )↑G

)
F(γ′↑G)

// F
(
L′2(P )↑G

)
∼= k↑GN ⊗ L′2 ε⊗1

// L′2.
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Let r denote the p-rank of G, and suppose that s is an integer with 0 ≤ s ≤ r.
Let kG-Mod(s) denote the full subcategory of kG-Mod consisting of all modules M
with es ⊗M ∼= M , and let Ls(G, k) be the full subcategory of L(G, k) consisting
of all objects L such that es ⊗ L ∼= L. It is easy to check that if M is any kG-
module, then M is in kG-Mod(s) if and only if FM is in Ls(G, k). In particular,
the restriction of F to kG-Mod(s) defines a functor Fs : kG-Mod(s)→ Ls(G, k).

Lemma 5.8. Let 0 ≤ s ≤ r − 1, and assume that the functor Fs : kG-Mod(s) →
Ls(G, k) is essentially surjective. Then Fs+1 is also essentially surjective.

Proof. Let L be an object of Ls+1(G, k). Then es ⊗ L is an object of Ls(G, k), so
there is a module M in kG-Mod(s) such that FM ∼= es ⊗ L. Let ξ : FM → L
denote the composition

FM ∼= es ⊗ L
η⊗1−−→ L.

Then 1⊗ ξ : es ⊗ FM → es ⊗ L is an isomorphism.
Let E1, . . . , En be representatives for the conjugacy classes of elementary abelian

p-subgroups of rank s + 1 in G. Fix i with 1 ≤ i ≤ n, and consider the map
βEi = βs ⊗ 1 occurring in the triangle

es↓Ni ⊗ L(Ei) // L(Ei) // fs↓Ni ⊗ L(Ei)
βs⊗1

// Ω−1k ⊗ es↓Ni ⊗ L(Ei).

Using the isomorphisms

HomkNi

(
fs↓Ni ⊗ L(Ei),Ω−1k ⊗ es↓Ni ⊗ L(Ei)

)
∼= HomkNi

(
fs↓Ni ⊗ L(Ei),Ω−1k ⊗ (FM)(Ei)

)
= HomkNi

(
fs↓ ⊗ L(Ei),Ω−1k ⊗ eNi,Ei ⊗M↓

)
∼= HomkNi

(
fs↓Ni ⊗ L(Ei),Ω−1k ⊗M↓Ni

)
∼= HomkG

(
fs ⊗ L(Ei)↑G,Ω−1k ⊗M

)
,

we obtain a map β′Ei : fs ⊗ L(Ei)↑G → Ω−1k ⊗ M corresponding to βEi . Set
Ms+1 =

⊕n
i=1 L(Ei)↑G. Taking the direct sum of the maps β′Ei for 1 ≤ i ≤ n gives

a map β : fs ⊗Ms+1 → Ω−1k ⊗M . Let M ′ be the kG-module defined by the
triangle

M
µ

// M ′ // fs ⊗Ms+1
β

// Ω−1k ⊗M.

Then V̄G(M ′) ⊆ V̄G(M) ∪ V̄G(fs ⊗ Ms+1) ⊆ Vs+1, so M ′ is an object of kG-
Mod(s+ 1). We will show that FM ′ ∼= L.

Observe that for 1 ≤ i ≤ n the map β′Ei : fs ⊗ L(Ei)↑G → Ω−1k ⊗M factors as

fs ⊗ L(Ei)↑G
βs⊗1−−−→ Ω−1k ⊗ es ⊗ L(Ei)↑G ∼= Ω−1k ⊗

(
es↓Ni ⊗ L(Ei)

)
↑G

∼= Ω−1k ⊗ (eNi,Ei ⊗M↓Ni)↑
G ∼= Ω−1k ⊗ e↑GNi,Ei ⊗M

1⊗εηi↑G⊗1−−−−−−−→ Ω−1k ⊗M.

Let P be a Sylow p-subgroup of G, and set N = NG(P ). Then the map (Fβ′Ei)(P )
in kN -Mod is given by the composition

eN,P ⊗ fs↓N ⊗ L(Ei)↑G↓N → eN,P ⊗ Ω−1k ⊗ e↑GNi,Ei↓ ⊗M↓
1⊗1⊗εηi↑G⊗1−−−−−−−−−→ eN,P ⊗ Ω−1k ⊗M↓N .
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After a permutation of the tensor factors, the first map in this composition is just
the composition around the diagram

fs↓N ⊗ eN,P ⊗ L(Ei)↑G↓N ∼=

βs⊗1⊗1

��

fs↓N ⊗ e
↑G
Ni,Ei

↓N ⊗ L(P )

βs⊗1⊗1

��

Ω−1k ⊗ es↓N ⊗ eN,P ⊗ L(Ei)↑G↓N ∼=(
1⊗1⊗1⊗ξ(Ei)↑↓

)−1

��

Ω−1k ⊗ es↓N ⊗ e
↑G
Ni,Ei

↓N ⊗ L(P )(
1⊗1⊗1⊗ξ(P )

)−1

��

Ω−1k ⊗ es↓N ⊗ eN,P ⊗ (eNi,Ei ⊗M↓Ni )↑
G↓N ∼=

1⊗η⊗1⊗1 ∼=
��

Ω−1k ⊗ es↓N ⊗ e
↑G
Ni,Ei

↓N ⊗ eN,P ⊗M↓N

∼= 1⊗η⊗1⊗1⊗1

��

Ω−1k ⊗ eN,P ⊗ (eNi,Ei ⊗M↓Ni)↑
G↓N ∼= Ω−1k ⊗ e↑GNi,Ei↓N ⊗ eN,P ⊗M↓N ,

in which the middle square commutes by Proposition 4.2. It follows, therefore, that
the triangle in which the third map is

eN,P ⊗ fs↓N ⊗Ms+1↓N
1⊗β

// eN,P ⊗ Ω−1k ⊗M↓N ∼= Ω−1k ⊗ eN,P ⊗M↓N

is isomorphic to the triangle in which the third map is given by the composition

fs↓N ⊗
( n⊕
i=1

e↑GNi,Ei↓N
)
⊗ L(P )

βs⊗1⊗1−−−−−→ Ω−1k ⊗ es↓N ⊗
( n⊕
i=1

e↑GNi,Ei↓N
)
⊗ L(P )(

1⊗1⊗1⊗ξ(P )
)−1

−−−−−−−−−−−−→ Ω−1k ⊗ es↓N ⊗
( n⊕
i=1

e↑GNi,Ei↓N
)
⊗ eN,P ⊗M↓N

1⊗1⊗(
⊕
εηi↑↓)⊗1⊗1−−−−−−−−−−−−−→ Ω−1k ⊗ es↓N ⊗ eN,P ⊗M↓N .

Let us call this composition β̃. For 1 ≤ i ≤ n let αi : e↑GNi,Ei → es+1 be the map
defined in Proposition 2.7, and let α :

⊕n
i=1 e

↑G
Ni,Ei

→ es+1 be the direct sum of
the αi. Then ηα =

⊕n
i=1 εηi↑

G, and one can check that there is a commutative
diagram

fs↓N ⊗
(⊕n

i=1 e
↑G
Ni,Ei

↓N
)
⊗ L(P )

1⊗α⊗1

��

β̃
// Ω−1k ⊗ es↓N ⊗ eN,P ⊗M↓N

1⊗1⊗ξ(P )

��

fs↓N ⊗ es+1↓N ⊗ L(P )
βs⊗η⊗1

// Ω−1k ⊗ es↓N ⊗ L(P ).

Now 1 ⊗ α : fs ⊗
(⊕n

i=1 e
↑G
Ni,Ei

)
→ fs ⊗ es+1 is a stable isomorphism by Proposi-

tion 2.7, and 1⊗ξ(P ) : es↓N ⊗eN,P ⊗M↓N → es↓N ⊗L(P ) is also an isomorphism.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LOCAL SUBGROUPS AND THE STABLE CATEGORY 2203

It follows that there are isomorphisms of triangles

eN,P ⊗M↓

∼= (η⊗1⊗1)−1

��

1⊗µ
// eN,P ⊗M ′↓ // fs↓ ⊗ eN,P ⊗Ms+1↓

∼= γ

��

// Ω−1k ⊗ eN,P ⊗M↓

(1⊗η⊗1⊗1)−1

��

es↓ ⊗ eN,P ⊗M↓

1⊗ξ(P )

��

η⊗1⊗µ
// eN,P ⊗M ′↓

ζ

��

// fs↓ ⊗ (
⊕
i e
↑G
Ni,Ei

↓)⊗ L(P )

1⊗α⊗1

��

β̃
// Ω−1k ⊗ es↓ ⊗ eN,P ⊗M↓

1⊗1⊗ξ(P )

��

es↓ ⊗ L(P )
η⊗1

// L(P ) // fs↓ ⊗ es+1↓ ⊗ L(P )
βs⊗η⊗1

// Ω−1k ⊗ es↓ ⊗ L(P )

for some ζ : eN,P ⊗M ′↓N → L(P ).
The first and last triangles in this commutative diagram correspond to G-local

homomorphisms

FM
Fµ

// FM ′ // fs ⊗ FMs+1
// Ω−1k ⊗ FM

and

es ⊗ L
η⊗1

// L // fs ⊗ es+1 ⊗ L // Ω−1k ⊗ es ⊗ L.
Because there are G-local homomorphisms

FM
(η⊗1)−1

−−−−−→ es ⊗ FM
1⊗ξ−−→ es ⊗ L

and

fs ⊗ FMs+1
∼= fs ⊗

n⊕
i=1

F
(
L(Ei)↑G

) ∼= fs ⊗
( n⊕
i=1

e↑GNi,Ei
)
⊗ L

1⊗α⊗1−−−−→ fs ⊗ es+1 ⊗ L,
Proposition 5.3 shows that the compositions

eN,P ⊗M↓N
(η⊗1⊗1)−1

−−−−−−−→ es↓N ⊗ eN,P ⊗M↓N
1⊗ξ(P )−−−−−→ es↓N ⊗ L(P )

and

fs↓N ⊗ eN,P ⊗Ms+1↓N
γ−→∼= fs↓ ⊗

( n⊕
i=1

e↑GNi,Ei↓
)
⊗ L(P )

1⊗α⊗1−−−−→ fs↓N ⊗ es+1↓N ⊗ L(P )

are both G-stable. Define

σ = (1⊗ ξ(P )) ◦ (η ⊗ 1⊗ 1)−1 : eN,P ⊗M↓N → es↓N ⊗ L(P ).

Then Proposition 5.4 and Lemma 5.7 imply that there is a commutative diagram
of triangles

eN,P ⊗M↓N
1⊗µ

//

σ

��

eN,P ⊗M ′↓N

(Tζ)(P )

��

// fs↓N ⊗ eN,P ⊗Ms+1↓N

(1⊗α⊗1)γ

��

// Ω−1k ⊗ eN,P ⊗M↓N

1⊗σ
��

es↓N ⊗ L(P )
η⊗1

// L(P ) // fs↓N ⊗ es+1↓N ⊗ L(P ) // Ω−1k ⊗ es↓N ⊗ L(P ).

Hence (Tζ)(P ) : eN,P ⊗M ′↓N → L(P ) is an isomorphism. Corollary 5.6 implies
that Tζ : FM ′ → L is an isomorphism in Ls+1(G, k), and this completes the
proof.
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We can now prove the main result of the paper.

Theorem 5.9. The functor F : kG-Mod→ L(G, k) is an equivalence of categories.

Proof. The functor F0 : kG-Mod(0)→ L0(G, k) is trivially an equivalence because
all objects of both kG-Mod(0) and L0(G, k) are isomorphic to zero. For 1 ≤ s ≤ r
Lemma 5.8 implies by induction that Fs is essentially surjective. In particular,
F = Fr is essentially surjective.

Now suppose that γ : M → M ′ is a kG-homomorphism such that Fγ = 0. Let
P be a Sylow p-subgroup of G, and set N = NG(P ). Identifying eN,P with kN , we
see that 0 = (Fγ)(P ) = γ↓N and hence γ = 0. Thus F is faithful. Since F is full by
Corollary 5.5, it follows that F is an equivalence, as desired.

Assume that P is a Sylow p-subgroup of G, and set N = NG(P ). Let l(G, k)
be the full subcategory of L(G, k) consisting of the objects L such that L(P ) is
stably isomorphic to a finitely generated kN -module. If M is a finitely generated
kG-module, then FM is an object of l(G, k), so the restriction of F defines a functor
f : kG-mod→ l(G, k).

Corollary 5.10. The functor f : kG-mod→ l(G, k) is an equivalence of categories.

Proof. Theorem 5.9 implies that f is full and faithful, so it is only necessary to
show that f is essentially surjective. Let L be an object of l(G, k). Then there
is a kG-module M with FM ∼= L in L(G, k), and we may assume without loss of
generality that M has no projective summands. The definition of l(G, k) shows
that M↓N ∼= M0⊕Q in kN -Mod for some finitely generated module M0 and some
projective module Q. But M is a summand of M↓N↑G ∼= M0↑G⊕Q↑G, and M has
no projective summands. Thus M is a summand of M0↑G, so that M is finitely
generated. It follows that fM ∼= L in l(G, k), as desired.

We now prove the result on restrictions of G-local modules stated in Section 4.

Corollary 5.11. Let L be an object of L(G, k), and let P ∈ P(G). Then there is
an isomorphism F

(
L(P )

) ∼= eN,P⊗L↓N in L(N, k), and the isomorphism is natural
in L.

Proof. Let M be a kG-module such that there is an isomorphism ξ : L → FM in
L(G, k). Then we obtain isomorphisms

F
(
L(P )

) F(ξ(P ))−−−−−→ F(eN,P ⊗M↓N ) ∼= eN,P ⊗ F(M↓N )
∼= eN,P ⊗ (FM)↓N ∼= eN,P ⊗ L↓N

in L(N, k). It is easy to check that the resulting isomorphism F
(
L(P )

) ∼= eN,P⊗L↓N
is natural.

If B is a block of kG, then it seems reasonable to expect that there is a cate-
gory that is equivalent to the stable category B-Mod and has a definition similar
to that of L(G, k). Unfortunately, the definition of L(G, k) does not seem to be
compatible with the block structure of kG. It is not clear, therefore, whether an
appropriate construction can be obtained simply by modifying the techniques used
here; significantly different ideas may be necessary.
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