## Regularized orbital integrals for representations of ${\mathbf {S} \mathbf {L}}(2)$

HTML articles powered by AMS MathViewer

- by Jason Levy PDF
- Trans. Amer. Math. Soc.
**354**(2002), 2521-2539 Request permission

## Abstract:

Given a finite-dimensional representation of ${\mathbf {S} \mathbf {L}}(2,F)$, on a vector space $V$ defined over a local field $F$ of characteristic zero, we produce a regularization of orbital integrals and determine when the resulting distribution is non-trivial.## References

- Armand Borel and Harish-Chandra,
*Arithmetic subgroups of algebraic groups*, Ann. of Math. (2)**75**(1962), 485–535. MR**147566**, DOI 10.2307/1970210 - Boris Datskovsky and David J. Wright,
*The adelic zeta function associated to the space of binary cubic forms. II. Local theory*, J. Reine Angew. Math.**367**(1986), 27–75. MR**839123**, DOI 10.1515/crll.1986.367.27 - H. Jacquet and R. P. Langlands,
*Automorphic forms on $\textrm {GL}(2)$*, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR**0401654** - George R. Kempf,
*Instability in invariant theory*, Ann. of Math. (2)**108**(1978), no. 2, 299–316. MR**506989**, DOI 10.2307/1971168 - Jason Levy,
*Truncated integrals and the Shintani zeta function for the space of binary quartic forms*, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 277–299. MR**1703763** - Cary Rader and Steve Rallis,
*Spherical characters on $\mathfrak {p}$-adic symmetric spaces*, Amer. J. Math.**118**(1996), no. 1, 91–178. MR**1375304** - R. Ranga Rao,
*Orbital integrals in reductive groups*, Ann. of Math. (2)**96**(1972), 505–510. MR**320232**, DOI 10.2307/1970822 - Takuro Shintani,
*On Dirichlet series whose coefficients are class numbers of integral binary cubic forms*, J. Math. Soc. Japan**24**(1972), 132–188. MR**289428**, DOI 10.2969/jmsj/02410132 - J. T. Tate,
*Fourier analysis in number fields, and Hecke’s zeta-functions*, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 305–347. MR**0217026** - David J. Wright,
*Twists of the Iwasawa-Tate zeta function*, Math. Z.**200**(1989), no. 2, 209–231. MR**978295**, DOI 10.1007/BF01230282

## Additional Information

**Jason Levy**- Affiliation: Department of Mathematics, University of Ottawa, 585 King Edward, Ottawa, ON K1N 6N5, Canada
- Email: jlevy@science.uottawa.ca
- Received by editor(s): August 7, 2000
- Received by editor(s) in revised form: September 11, 2001
- Published electronically: February 1, 2002
- Additional Notes: Partially supported by an NSERC grant.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 2521-2539 - MSC (2000): Primary 22E30, 22E35
- DOI: https://doi.org/10.1090/S0002-9947-02-02967-7
- MathSciNet review: 1885662