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Abstract. In this paper we establish a tractable and explicit criterion for
the hyponormality of arbitrary trigonometric Toeplitz operators, i.e., Toeplitz
operators Tϕ with trigonometric polynomial symbols ϕ. Our criterion involves
the zeros of an analytic polynomial f induced by the Fourier coefficients of ϕ.
Moreover the rank of the selfcommutator of Tϕ is computed from the number

of zeros of f in the open unit disk D and in C \ D counting multiplicity.

1. Introduction

A bounded linear operator A on a Hilbert space H with inner product (·, ·) is said
to be hyponormal if its selfcommutator [A∗, A] = A∗A − AA∗ induces a positive
semidefinite quadratic form on H via ξ 7→ ([A∗, A]ξ, ξ), for ξ ∈ H. Recall that
given ϕ ∈ L∞(T), the Toeplitz operator with symbol ϕ is the operator Tϕ on the
Hardy space H2(T) of the unit circle T = ∂D in the complex plane C defined by
Tϕf = P (ϕ · f), where f ∈ H2(T) and P denotes the orthogonal projection that
maps L2(T) onto H2(T).

An elegant theorem of C. Cowen [Co2] characterizes the hyponormality of
Toeplitz operators Tϕ on H2(T) by properties of the symbol ϕ ∈ L∞(T). Nor-
mal Toeplitz operators were characterized by a property of their symbols in the
early 1960’s by A. Brown and P. Halmos [BH], and 25 years passed before the ex-
act nature of the relationship between the symbol ϕ ∈ L∞(T) and the positivity of
the selfcommutator [T ∗ϕ, Tϕ] was understood via Cowen’s theorem [Co2]. As Cowen
notes in his survey paper [Co1], the intensive study of subnormal Toeplitz operators
in the 1970’s and early 80’s is one explanation for the relatively late appearance of
the sequel to the Brown-Halmos work. In fact, it remains still open to characterize
subnormality of Toeplitz operators in terms of their symbols though C. Cowen and
J. Long [CoL] answered in the negative to Problem 5 of Halmos’s 1970 lectures
“Ten problems in Hilbert space” (cf. [Ha1], [Ha2]): Is every subnormal Toeplitz
operator either normal or analytic? The characterization of hyponormality in [Co2]
requires one to solve a certain functional equation in the unit ball of H∞(T). Here
we shall employ an equivalent variant of Cowen’s theorem that was first proposed
by T. Nakazi and K. Takahashi [NT]. Suppose that ϕ ∈ L∞(T) is arbitrary and
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consider the following subset of the closed unit ball of H∞(T):

E(ϕ) = {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .
The criterion is that Tϕ is hyponormal if and only if the set E(ϕ) is nonempty
[Co2],[NT]. This theorem is referred to as the Cowen’s theorem. Cowen’s method
is to recast the operator-theoretic problem of hyponormality for Toeplitz operators
into the problem of finding a solution of a certain functional equation involving
its symbol. This approach has been put to use in the works [CuL],[FL1],[FL2],
[HKL],[NT],[Zhu] to study hyponormal Toeplitz operators on H2(T). An abstract
version of Cowen’s method has been developed in [Gu].

If ϕ is a trigonometric polynomial of the form ϕ(z) =
∑N

n=−m anz
n, where a−m

and aN are nonzero, then the nonnegative integers N and m denote the analytic
and co-analytic degrees of ϕ. If a function k ∈ H∞(T) satisfies ϕ − k ϕ ∈ H∞(T),
then k necessarily satisfies

k
N∑
n=1

anz
−n −

m∑
n=1

a−nz
−n ∈ H∞(T) .(1)

From (1) one computes the Fourier coefficients k̂(0), . . . , k̂(N −1) of k to be k̂(n) =
cn, for n = 0, 1, . . . , N −1, where c0, c1, . . . , cN−1 are determined uniquely from the
coefficients of ϕ by the recurrence relation

c0 = c1 = · · · = cN−m−1 = 0,

cN−m =
a−m
aN

,(2)

cn = (aN )−1
(
a−N+n −

n−1∑
j=N−m

cjaN−n+j

)
, for n = N −m+ 1, · · · , N − 1 ,

or in matrix form,

c0 = c1 = · · · = cN−m−1 = 0,
cN−m
cN−m+1

...
cN−1

 =


aN−m+1 aN−m+2 . . . aN−1 aN
aN−m+2 aN−m+3 . . . aN 0

...
...

. . .
...

...
aN 0 . . . 0 0


−1

a−1

a−2

...
a−m

 .(3)

Thus kp(z) :=
∑N−1

j=N−m cjz
j is the unique analytic polynomial of degree less than

N satisfying ϕ− k ϕ ∈ H∞. However despite the fact that the recurrence relation
(3) can always be solved uniquely to produce an analytic polynomial kp satisfying
ϕ − kpϕ ∈ H∞, the polynomial kp need not be contained in the set E(ϕ), even if
E(ϕ) is known to be nonempty. Thus the problem of finding a solution in E(ϕ) is
to find a function k in the closed unit ball of H∞(T) interpolating kp. Recently K.
Zhu [Zhu] has adopted a method based on the classical interpolation theorems of
I. Schur [Sch] to obtain an abstract characterization of those trigonometric poly-
nomial symbols that correspond to hyponormal Toeplitz operators. Furthermore,
he was able to use this characterization to give explicit necessary and sufficient
conditions for hyponormality in terms of the coefficients of the polynomial ϕ when-
ever m ≤ 3. Also in [FL1], using the preceding consideration, the hyponormality
of Tϕ was completely characterized for the cases where ϕ has outer coefficients of
the same modulus, i.e., |a−m| = |aN |. However, with polynomials of higher degree
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with |a−m| < |aN |, the analogous explicit necessary and sufficient conditions (via
properties of coefficients) are not known. Indeed the case of arbitrary trigonometric
polynomial ϕ, though solved in principle by Cowen’s theorem or Schur’s algorithm,
is in practice very complicated.

The goal of the present paper is to establish a tractable and explicit criterion for
hyponormality of arbitrary trigonometric Toeplitz operators, i.e., Toeplitz operators
with trigonometric polynomial symbols. In Section 2 we discuss preliminary results
and present the main theorem - a criterion for the hyponormality of trigonometric
Toeplitz operators. In Section 3 we provide auxiliary lemmas which are needed
for proving the main theorem and Section 4 is devoted to the proof of the main
theorem. In Section 5 we give remarks and examples which illustrate the main
theorem.

2. Preliminaries and the Criterion

We first review Schur’s algorithm determining hyponormality of trigonometric
Toeplitz operators. Suppose that k(z) =

∑∞
j=0 cjz

j is in the closed unit ball of
H∞(T). Let k0 := k. Define by induction a sequence {kn} of functions in the
closed unit ball of H∞(T) as follows:

kn+1(z) =
kn(z)− kn(0)

z
(
1− kn(0) kn(z)

) , |z| < 1, n = 0, 1, 2, · · · .

Then kn(0) only depends on the coefficients c0, c1, · · · , cn. We write kn(0) =
Φn(c0, · · · , cn) for n = 0, 1, 2, · · · , where Φn is a function of n+1 complex variables.
We call the Φn’s Schur’s functions. Then Zhu’s theorem is as follows:

Zhu’s Theorem ([Zhu]). If ϕ(z) =
∑N

n=−m anz
n, where aN 6= 0 and if c0, · · · ,

cN−1 are given by (3), then the following statements are equivalent.
1. Tϕ is a hyponormal operator.
2. |Φn(c0, · · · , cn)| ≤ 1 for every n = 0, 1, · · · , N − 1.

As we noted in the introduction, if k(z) =
∑∞

j=0 cjz
j is a function in H∞(T),

then ϕ− kϕ ∈ H∞(T) if and only if c0, · · · , cN−1 are given by (3). So by Cowen’s
theorem, if c0, · · · , cN−1 are given by (3) then the hyponormality of Tϕ is equivalent
to the existence of a function k ∈ H∞(T) satisfying

(i) k̂(j) = cj , j = 0, · · · , N − 1;
(ii) ||k||∞ ≤ 1.

This is exactly the classical interpolation theorem solving the so-called Carathéodory–
Schur interpolation problem (CSIP). CSIP is analyzed by Schur’s functions (cf.
[Sch]): CSIP is solvable if and only if |Φn(c0, · · · , cn)| ≤ 1 for every n = 0, 1, · · · , N−
1. Thus Zhu’s theorem follows at once. By a straightforward calculation we can
see that

Φ0(c0) = c0, Φ1(c0, c1) =
c1

1− |c0|2
, Φ2(c0, c1, c2) =

c2(1− |c0|2) + c0c
2
1

(1− |c0|2)2 − |c1|2
,

so that for example, if ϕ(z) =
∑2

n=−2 anz
n then Tϕ is hyponormal if and only if

|c1| ≤ 1 − |c0|2 or equivalently,
∣∣det

( a−1 a−2
a1 a2

)∣∣ ≤ |a2|2 − |a−2|2 (cf. [Fa], [Zhu]).
However, with trigonometric polynomials of higher degree, Zhu’s theorem would be
too complicated to be of much value because no closed-form for Schur’s function
Φn is known.
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The following theorem due to T. Nakazi and K. Takahashi [NT] provides useful
information for E(ϕ) corresponding to hyponormal trigonometric Toeplitz operators
Tϕ.

Nakazi-Takahashi Theorem ([NT]). A Toeplitz operator Tϕ is hyponormal and
the rank of the selfcommutator [T ∗ϕ, Tϕ] is finite (e.g., ϕ is a trigonometric polyno-
mial) if and only if there exists a finite Blaschke product k ∈ E(ϕ) of the form

k(z) = eiθ
n∏
j=1

z − βj
1− βjz

(|βj | < 1 for j = 1, · · · , n).

such that deg (k) = rank [T ∗ϕ, Tϕ], where deg (k) denotes the degree of k – meaning
the number of zeros of k in the open unit disk D.

Before continuing further, we record here results on the hyponormality of trigono-
metric Toeplitz operators, which have been recently developed in the literature.

Proposition 1. Suppose that ϕ(z) =
∑N

n=−m anz
n, where a−m and aN are nonzero.

(i) If Tϕ is hyponormal, then m ≤ N , |a−m| ≤ |aN | and N−m ≤ rank [T ∗ϕ, Tϕ] ≤
N . Furthermore, the hyponormality of Tϕ is independent of the particular
values of the Fourier coefficients a0, a1, · · · , aN−m of ϕ.

(ii) If ϕ := ḡ+f , where f and g are in H∞(T), and if ϕ̃ := ḡ+Tz̄rf (r ≤ N−m),
then Tϕ is hyponormal if and only if Tϕ̃ is.

(iii) If |a−m| = |aN |, then Tϕ is hyponormal if and only if the following symmetric
condition holds:

aN


a−1

a−2

...
a−m

 = a−m


aN−m+1

aN−m+2

...
aN

 .

In this case, the rank of [T ∗ϕ, Tϕ] is N −m and E(ϕ) = {a−m(aN )−1 zN−m}.
In particular, Tϕ is normal if and only if m = N, |a−m| = |aN |, and the
above symmetric condition holds.

Proof. The proof of (i) is known from [FL2],[IW] and [Zhu], the proof of (ii) is given
in [CuL], and the proof of (iii) is given in [FL1].

The assertion (ii) of Proposition 1 shows that if ϕ(z) =
∑N

n=−m anz
n, where

m ≤ N , a−m 6= 0 and aN 6= 0, then the hyponormality of Tϕ can be determined by
that of Tψ with symbol ψ of the form

ψ(z) :=
m∑

n=−m
bnz

n, where bn =

{
an (−m ≤ n ≤ 0),
aN−m+n (1 ≤ n ≤ m).

(4)

In the sequel we will assume that m ≤ N .
Our main theorem now follows:

Theorem 1. Suppose that ϕ(z) =
∑N

n=−m anz
n, where a−m and aN are nonzero

and that c0, · · · , cN−1 are given by (3). Let H denote the block Hankel matrix given



HYPONORMALITY OF TRIGONOMETRIC TOEPLITZ OPERATORS 2465

by

H :=


0 . . . . . . 0 A0

... 0 A0 A1

... · · ·
...

0 A0 · Am−3

A0 A1 . . . Am−3 Am−2

 ,

where

Aj :=
(

Re cN−m+j Im cN−m+j

Im cN−m+j −Re cN−m+j

)
for j = 0, · · · ,m− 2

and let

V :=



Re cN−m+1

Im cN−m+1

Re cN−m+2

Im cN−m+2

...
Re cN−1

Im cN−1


∈ R2m−2.

If the linear system

(I2m−2 −H)X = V (the unknown is X ∈ R2m−2)(5)

is solvable, let f denote the analytic polynomial

f(z) := cN−m +
m−1∑
j=1

(xj + i yj)zj + zm,

where X := (x1, y1, x2, y2, · · · , xm−1, ym−1)T is a solution of the system (5). Then
the following statements are equivalent.

1. Tϕ is a hyponormal operator.
2. The linear system (5) is solvable, and for every zero ζ of f such that |ζ| > 1,

the number 1/ζ is a zero of f in the open unit disk D of multiplicity greater
than or equal to the multiplicity of ζ.

In the cases where Tϕ is a hyponormal operator, we have that zN−m f

zm f
is a fi-

nite Blaschke product in E(ϕ). Moreover the rank of the selfcommutator of Tϕ is
computed from the formula

rank [T ∗ϕ, Tϕ] = N −m+ ZD − ZC\D,(6)

where ZD and ZC\D are the number of zeros of f in D and in C \ D counting
multiplicity.

It is interesting and surprising that the hyponormality of Tϕ and the rank of the
selfcommutator [T ∗ϕ, Tϕ] are independent of the particular solutions of the system
(5).
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3. Auxiliary Lemmas

To prove the main theorem we need two auxiliary lemmas.

Lemma 1. Suppose that B is a finite Blaschke product of degree m ≤ n and let

k(z) := eiω
r∏
j=1

z − ζj
1− ζj z

(r ≤ n; |ζj | 6= 1; ω ∈ [0, 2π)).(7)

Suppose that k satisfies the finite interpolation

k̃(j) = B̃(j) for j = 0, · · · , n− 1,(8)

where k̃(j) and B̃(j) denote the j-th Taylor coefficients of k and B, respectively.
(Here Taylor series expansions should be understood as to be valid for

|z| < 1/ max
1≤j≤r

{1, |ζj|}.)

Then k is also a finite Blaschke product. In particular, if m+ r < 2n, then B = k,
and if m = r = n, then deg(k) = n.

Proof. For the first assertion, it will suffice to show that all the ζj are inside the
unit circle T. Write

B(z) := eiθ
m∏
j=1

z − αj
1− αj z

(|αj | < 1 for 1 ≤ j ≤ m).

If k satisfies the interpolation (8), so that B(z) − k(z) = zn
∑∞

j=0 bjz
j for some

bj (j = 0, 1, · · · ), which is valid for |z| < 1/max1≤j≤r{1, |ζj|}, then multiplying∏m
j=1(1− αj z)

∏r
j=1(1− ζj z) on both sides gives

eiθ
m∏
j=1

(z − αj)
r∏
j=1

(1− ζj z) − eiω
r∏
j=1

(z − ζj)
m∏
j=1

(1− αj z) =
m+r∑
j=n

djz
j(9)

for some dj (n ≤ j ≤ m+ r). Note that the expression (9) is valid throughout C.
Observe that if m + r < n then evidently, B = k. Thus we assume m + r ≥ n.
Write

f(z) :=
m∏
j=1

(z − αj)
r∏
j=1

(1− ζj z).

Suppose now that z lies on the unit circle T. Then

zm+rf(z) =
r∏
j=1

(z − ζj)
m∏
j=1

(1− αj z).

Note that if f(z) :=
∑m+r
j=0 ajz

j, then zm+rf(z) =
∑m+r

j=0 am+r−jz
j. Thus (9)

implies that

eiθf(z)− eiωzm+rf(z) =
m+r∑
j=n

djz
j,

so

eiθaj = eiωam+r−j (j = 0, · · · , n− 1).(10)



HYPONORMALITY OF TRIGONOMETRIC TOEPLITZ OPERATORS 2467

Therefore if m + r < 2n then eiθaj = eiωam+r−j for j = 0, · · · ,m + r, so that
eiθf(z) = eiωzm+rf(z). This shows that again B = k. Now it remains to show
that |ζj | < 1 for j = 1, · · · , r when m = r = n. By (10) we have that

eiθf(z)− eiωz2nf(z) =
(
eiθan − eiωan

)
zn.

If eiθan = eiωan then again B = k. Thus we suppose eiθan 6= eiωan. Observe that

1 =

∣∣∣∣∣ eiθf(z)
eiωz2nf(z)

∣∣∣∣∣ =

∣∣∣∣∣1 +

(
ei(θ−ω)an − an

)
zn

z2nf(z)

∣∣∣∣∣ .(11)

If we let g(z) denote the function

g(z) :=

(
ei(θ−ω)an − an

)
zn

z2nf(z)
=

(
ei(θ−ω)an − an

)
zn∏n

j=1(z − ζj)
∏n
j=1(1− αjz)

,

then by (11), g(T) should lie in the left half-plane Re z < 0. Thus the image
curve g(T) of the unit circle T under g(z) does not surround the origin, so that the
winding number, wind (g(T), 0), of g(T) with respect to 0 must be zero. But since

0 = wind (g(T), 0) = ]
(
zeros of g inside T

)
− ]
(
poles of g inside T

)
= n− ]

(
the ζj ’s inside T

)
(because all the αj are inside T),

it follows that |ζj | < 1 for all j (1 ≤ j ≤ n). This proves the first assertion. The
second assertion was already proved in the above argument. This completes the
proof.

We review here Carathéodory’s theorem (cf. [Ga, Theorem I.2.1]) which states
that for every function k in the closed unit ball of H∞(T) there exists a sequence
{Bn} of finite Blaschke products that converges to k(z) pointwise on D. Its proof
relies upon a construction of a sequence {Bn} of finite Blaschke products satisfying
that if k(z) =

∑∞
j=0 cjz

j is in the closed unit ball of H∞(T), then

B̂n(j)=cj for j=0, · · ·, n, (B̂n(j) denotes the j-th Fourier coefficient of Bn).

The construction runs as follows. Write Φn for the n-th Schur’s function corre-
sponding to the function k. Since |Φ0| = |c0| ≤ 1, we can take B0 := z+Φ0

1+Φ0z
. If

|Φ0| = 1 then B0 = c0 is the Blaschke product such that B0 = k. Write B(0)
0 := B0.

If |Φj | < 1 for j = 0, · · · , n, let

B(0)
n :=

z + Φn
1 + Φnz

and define by induction

B(j)
n :=

z B
(j−1)
n + Φn−j

1 + Φn−j z B
(j−1)
n

(j = 1, · · · , n).

Set Bn := B
(n)
n . Then Bn satisfies the interpolation B̂n(j) = cj for j = 0, · · · , n.

If |Φn| = 1 then Bn is the finite Blaschke product such that Bn = k. This will be
referred to as the Carathéodory construction.

Lemma 2. Suppose that ϕ(z) =
∑m
n=−m anz

n, where a−m and am are nonzero, is
such that Tϕ is hyponormal. Then the following statements are equivalent.

1. rank [T ∗ϕ, Tϕ] = r.
2. |Φr| = 1 if r ≤ m− 1; |Φm−1| < 1 if r = m.
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3. There exists an analytic polynomial f of degree m with the leading coefficient
1 such that f

zmf
is a finite Blaschke product in E(ϕ) of degree r.

Remark. If f(z) =
∏m
j=1(z − ζj), then zmf(z) =

∏m
j=1(1− ζjz) on T. Thus if f

zmf

is in E(ϕ), then f

zmf
is a finite Blaschke product of degree at most m. In fact,

if rank [T ∗ϕ, Tϕ] = r, then by the Nakazi-Takahashi theorem there exists a finite
Blaschke product k ∈ E(ϕ) of the form

k(z) = eiθ
r∏
j=1

z − βj
1− βjz

(|βj | < 1 for j = 1, · · · , r).(12)

Therefore the crucial point of Lemma 2 is that if r = m, then we can choose θ = 0
in (12) (see the proof below).

Proof of Lemma 2. (2) ⇒ (3): Suppose that k(z) =
∑∞
j=0 cjz

j is in E(ϕ), so
c0, · · · , cm−1 are given by (3) with N = m. Thus we must find a Blaschke product
B of degree r such that B(z) := f(z)

zmf(z)
whose first m coefficients match those of

k, where f is an analytic polynomial of degree m with the leading coefficient 1. To
do this we will use the Carathéodory construction. Let {Bn} be the sequence of
finite Blaschke products in the Carathéodory construction. We first claim that if
|Φn| < 1 (and hence |Φj | < 1 for j = 0, · · · , n− 1), then

Bn =
f

zn+1 f
with deg(Bn) = n+ 1,(13)

where f is an analytic polynomial of degree n+1 with the leading coefficient 1. For
(13) we use an induction argument on j. Evidently, B(0)

n = z+Φn
1+Φn z

is a Blaschke
product of degree 1. If f0 := z + Φn then f0 is a polynomial of degree 1 with the
leading coefficient 1 and B

(0)
n = f0

z f0
. Suppose that B(j−1)

n = fj−1

zj fj−1
is a Blaschke

product of degree j and fj−1 is an analytic polynomial of degree j with the leading
coefficient 1. Note that the number of zeros of fj−1 in D is j. Observe that

B(j)
n (z) =

z B
(j−1)
n (z) + Φn−j

1 + Φn−j z B
(j−1)
n (z)

=
z fj−1(z) + Φn−j zj fj−1(z)
zj fj−1(z) + Φn−j z fj−1(z)

.

If we define fj(z) := z fj−1(z) + Φn−j zj fj−1(z), then B
(j)
n = fj

zj+1 fj
and by the

inductive hypothesis, fj is an analytic polynomial of degree j + 1 with the leading
coefficient 1. Concerning the degree of B(j)

n , note that |Φn−j | < 1. We need to
show that the number of zeros of fj in D is j + 1. Observe that

|Φn−j zj fj−1(z)| = |Φn−j | |fj−1(z)| < |fj−1(z)| = |z fj−1(z)| on T.
Therefore by Rouché’s theorem and the inductive hypothesis,

]
(
zeros of fj in D

)
= ]

(
zeros of zfj−1 in D

)
= j + 1,

which implies that deg(B(j)
n ) = j + 1. This proves (13). Therefore if |Φm−1| < 1

then by (13), Bm−1 is the required Blaschke product in E(ϕ). If instead |Φr| = 1
for r ≤ m− 1 (and hence |Φj | < 1 for j = 0, · · · , r− 1), then we claim that Br is a
Blaschke product in E(ϕ) of degree r. Indeed,

B(0)
r =

z + Φr
1 + Φr z

= Φr =: eiω for some ω ∈ [0, 2π).
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So

B(1)
r =

zeiω + Φr−1

1 + Φr−1zeiω
= eiω

z + e−iωΦr−1

1 + e−iωΦr−1z

is a Blaschke product of degree 1. By the same argument as the above we can see
that Br = B

(r)
r is a Blaschke product in E(ϕ) of degree r. Thus we can write

Br(z) = eiω
r∏
j=1

z − ζj
1− ζjz

(|ζj | < 1 for j = 1, · · · , r).

If we take

f(z) :=
r∏
j=1

(z − ζj)
m−r∏
j=1

(
z + ei(

ω
m−r )

)
,

then Br(z) = f(z)

zmf(z)
is the required Blaschke product of degree r.

(3) ⇒ (1): Suppose that f

zmf
is a finite Blaschke product in E(ϕ) of degree r.

Assume to the contrary that rank [T ∗ϕ, Tϕ] = ` 6= r. Then by the Nakazi-Takahashi
theorem we can find a finite Blaschke product B of degree ` in E(ϕ). Thus by the
second assertion of Lemma 1, we have that B = f

zmf
, a contradiction.

(1) ⇒ (2): If rank [T ∗ϕ, Tϕ] = r ≤ m− 1, then by the Nakazi-Takahashi theorem,
there exists a finite Blaschke productB1 in E(ϕ) of degree r. Assume to the contrary
that |Φr| < 1. Then in view of (13), we can find a finite Blaschke product B2 in
E(ϕ) such that r+ 1 ≤ deg (B2) ≤ m. But by the second assertion of Lemma 1, we
have that B1 = B2, a contradiction. Therefore we have that |Φr| = 1. If instead
rank [T ∗ϕ, Tϕ] = m then by the same argument we must have that |Φm−1| < 1.

4. Proof of the Main Theorem

We are ready to prove Theorem 1.

Proof of Theorem 1. In view of the assertion (ii) of Proposition 1 we may assume
without loss of generality that N = m for the hyponormality of Tϕ. Let f be an
analytic polynomial of the form f(z) :=

∑m
j=0 bjz

j with bm = 1. Then for all z
on the unit circle T, zmf(z) =

∑m
j=0 bm−jz

j. Thus f

zmf
∈ E(ϕ) if and only if the

following two conditions are satisfied:

(a) f

zmf
satisfies the interpolation

˜( f

zmf

)
(j) = cj (j = 0, · · · ,m− 1),(14)

where the cj are given by (3) with N = m;
(b) f

zmf
∈ H∞(T).

On the other hand, the interpolation (14) is solvable if and only if

m∑
j=0

bjz
j =

 m∑
j=0

bm−jz
j

m−1∑
j=0

cjz
j +

∞∑
j=m

djz
j

 for some dj (j ≥ m),(15)
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or in matrix form,


b0
b1
...

bm−1

bm

 =


c0

0 c0 c1

· ·
...

c0 c1 . . . cm−1

c0 c1 . . . cm−1 dm




b0
b1
...

bm−1

bm

 for some dm.(16)

If we write

bj := xj + i yj (0 ≤ j ≤ m), cj := αj + i βj (0 ≤ j ≤ m− 1), and
dm := αm + i βm

for the rectangular representation of each entry in (16), then the system (16) is
solvable if and only if the following system is solvable for some αm, βm ∈ R:



Im+1 −


α0

α0 α1

· ·
...

α0 α1 . . . αm




x0

x1

...
xm

 =


β0

β0 β1

· ·
...

β0 β1 . . . βm



y0

y1

...
ym

 ,

Im+1 +


α0

α0 α1

· ·
...

α0 α1 . . . αm




y0

y1

...
ym

 =


β0

β0 β1

· ·
...

β0 β1 . . . βm



x0

x1

...
xm

 .

(17)

Note that xm = 1 and ym = 0. Thus a simplification of (17) shows that the system
(17) is solvable if and only if b0 = c0, bm = 1, and the following system is solvable:

(I2m−2 −H)X = V,(18)

where

H :=



| α0 β0
| β0 −α0

−−− −−− −−− −−−
| α0 β0 | α1 β1

0 | β0 −α0 | β1 −α1
−−− −−− −−− −−−

· · ·
...

...

· · ·
...

...
−− −− −−− −−−
| α0 β0 | · · | αm−3 βm−3
| β0 −α0 | · | βm−3 −αm−3

−− −− −− −− −−− −−− −−− −−−
α0 β0 | α1 β1 | ... ... | αm−3 βm−3 | αm−2 βm−2
β0 −α0 | β1 −α1 | ... ... | βm−3 −αm−3 | βm−2 −αm−2


,
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X :=



x1

y1

x2

y2

...

...
xm−1

ym−1


and V :=



α1

β1

α2

β2

...

...
αm−1

βm−1


.

Therefore if the system (18) is solvable and if f

zmf
∈ H∞(T), then f

zmf
∈ E(ϕ)

and hence Tϕ is hyponormal. But note that ζ is a zero of f if and only if 1/ζ
is a zero of zmf . Therefore f(z)

zmf(z)
is analytic in D if and only if the zeros of f

have the property that for every zero ζ of f with |ζ| > 1, the complex number
1/ζ is a zero of f in D of multiplicity greater than or equal to the multiplicity
of ζ. This proves the sufficient condition for the hyponormality of Tϕ. Towards
the necessity condition, suppose that Tϕ is hyponormal. Then by Lemma 2 there
exists an analytic polynomial f of the form f(z) =

∑m
j=0 bjz

j with bm = 1 such
that f

zmf
∈ E(ϕ). Thus by the preceding argument the system (18) is solvable. It

remains to show that all solutions of the system (18) satisfy the second condition
of statement (2) of this theorem. This follows at once from Lemma 1: if g is an
analytic polynomial induced by another solution of the system (18), then g

zmg must
satisfy the interpolation(̃

f

zmf

)
(j) =

(̃
g

zmg

)
(j) for j = 0, · · · ,m− 1.

Thus by Lemma 1, g
zmg is also a finite Blaschke product, which implies that g also

satisfies the second condition of statement (2) of this theorem. This proves the
criterion which was sought.

For the second assertion, we argue that if ϕ(z) =
∑N

n=−m anz
n (m ≤ N) and if

ψ(z) =
∑m

n=−m bnz
n is the corresponding induced trigonometric polynomial as in

(4), then

rank [T ∗ϕ, Tϕ] = N −m+ rank [T ∗ψ, Tψ].(19)

Indeed if Bϕ and Bψ are the corresponding Blaschke products in E(ϕ) and E(ψ)
such that rank [T ∗ϕ, Tϕ] = deg(Bϕ) and rank [T ∗ψ, Tψ] = deg(Bψ) then we can find
Bϕ and Bψ satisfying Bϕ = zN−mBψ, which implies (19). Thus if Tψ is hyponormal
then by the preceding argument, B := f

zmf
is a finite Blaschke product in E(ψ) of

degree at most m, which implies that zN−m f

zmf
∈ E(ϕ). In view of Lemma 1, the

degree of B is independent of the particular choices of f . If deg(B) < m then by
the Nakazi-Takahashi theorem and the second assertion of Lemma 1, we have that
rank [T ∗ψ, Tψ] = deg(B). If instead deg(B) = m then evidently, rank [T ∗ψ, Tψ] = m.
Therefore if ZD and ZC\D denote the number of zeros of f in D and in C \ D
counting multiplicity, then since deg(B) = ZD−ZC\D, it follows that rank [T ∗ϕ, Tϕ] =
N −m+ ZD − ZC\D. This completes the proof.
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5. Remarks and Examples

Remark 1. In Lemma 2, the statement (3) cannot be strengthened by adding the
requirement that there exists an analytic polynomial f of degree r with the leading
coefficient 1 such that f

zrf
is a finite Blaschke product in E(ϕ) of degree r. To see

this consider the trigonometric polynomial

ϕ(z) = z−2 + 2z−1 + i z + 2i z2.

Then a straightforward calculation shows that rank [T ∗ϕ, Tϕ] = 1 and E(ϕ) has

precisely one element i z+ 1
2

1+ 1
2 z

. This illustrates the above assertion.

Remark 2. If ϕ(z) =
∑m
n=−m anz

n with |am| = |a−m|, then |c0| = 1 because c0 =
a−m
am

. So if Tϕ is hyponormal then c1 = · · · = cm−1 = 0. Thus f(z) = c0 +
zm satisfies the two conditions in statement (2) of Theorem 1. Note that f has
zeros only on the unit circle T, so that rank [T ∗ϕ, Tϕ] = 0 and hence Tϕ is normal.
Therefore we can conclude that if |am| = |a−m|, then Tϕ is hyponormal if and only
if Tϕ is normal; this recaptures the key point in the assertion (iii) of Proposition 1.

Example 1. Consider the trigonometric polynomial

ϕ(z) = −2z−4 + 9z−3 − 12z−2 + 4z−1 − 2z2 + 9z3 − 12z4 + 4z5.

We use Theorem 1 to determine the hyponormality of Tϕ. Observe that c0 = 0 and( c1
c2
c3
c4

)
=
( −2 9 −12 4

9 −12 4 0
−12 4 0 0

4 0 0 0

)−1( 4
−12

9
−2

)
=

− 1
2

3
4
3
8
3
16


and in turn,

I6 −H =


1 0 0 0 1

2 0

0 1 0 0 0 − 1
2

0 0 3
2 0 − 3

4 0

0 0 0 1
2 0 3

4
1
2 0 − 3

4 0 5
8 0

0 − 1
2 0 3

4 0 11
8

 and V =


3
4
0
3
8
0
3
16
0

 .

Since rank [I6 −H ] = 4 = rank [I6 −H : V ], the system (5) is solvable and has two
free variables. Set x2 = y2 = 0. Then the solution of the system is given by x1 = 1,
x3 = − 1

2 , y1 = y3 = 0. Thus the testing polynomial f is obtained by

f(z) = −1
2

+ z − 1
2
z3 + z4,

which has zeros at z = 1
2 ,−1, (−1)

1
3 ,−(−1)

2
3 . Therefore by Theorem 1, Tϕ is

hyponormal, and rank [T ∗ϕ, Tϕ] = N −m+ ZD − ZC\D = 5− 4 + 1 = 2. Moreover,

z
z − 1

2

1− 1
2z
∈ E(ϕ).

To illustrate that other solutions of the system (5) lead to the same result, let
us take x3 = y3 = 0. Then the solution of the system (5) is given by x1 = 3

4 ,
x2 = 1

4 , y1 = y2 = 0. So f(z) = − 1
2 + 3

4z + 1
4z

2 + z4, which has zeros at z =
1
2 ,−1, 1

4 (1−
√

15 i), 1
4 (1 +

√
15 i), which leads to the same result as the above.
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Example 2. Consider the trigonometric polynomial

ϕ(z) = z−4 + z−3 + 2z−2 + z2 + 2z3 + 2z4.

Observe that ( c0
c1
c2
c3

)
=
(

0 1 2 2
1 2 2 0
2 2 0 0
2 0 0 0

)−1( 0
2
1
1

)
=

 1
2
0
3
4
− 3

4


and in turn,

I6 −H =


1 0 0 0 − 1

2 0

0 1 0 0 0 1
2

0 0 1
2 0 0 0

0 0 0 3
2 0 0

− 1
2 0 0 0 1

4 0

0 1
2 0 0 0 7

4

 and V =


0
0
3
4
0
− 3

4
0

 .

Then a straightforward calculation shows that

rank [I6 −H ] = 5 6= 6 = rank [I6 −H : V ].

Thus the system (5) has no solution, and hence by Theorem 1, Tϕ is not hyponormal.
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